1. 树的定义、构成和术语
树(Tree)是最重要的数据结构之一,它是由
n
(
n
∈
N
)
n(n \in \mathbb{N})
n(n∈N) 个节点(也会被写作“结点”)构成的一个集合。其具有层次关系。树是递归定义的。
如下图,这就是一棵普通的树。
- 最上面的 1 1 1 称为根节点,最下面的 4 , 5 , 6 , 9 , 8 4,5,6,9,8 4,5,6,9,8 称为叶子节点。
- 每两个节点之间相连线的称为边。
- 1 1 1 的下方与其相连的有 2 , 3 2,3 2,3,我们就说,节点 1 1 1 是 2 , 3 2,3 2,3 的父节点(父亲), 2 , 3 2,3 2,3 是 1 1 1 的子节点(儿子), 2 , 3 2,3 2,3 互为兄弟节点。
- 节点 9 9 9 的父亲是 7 7 7, 7 7 7 的父亲是 3 3 3, 3 3 3 的父亲是 1 1 1。我们认为, 1 , 3 , 7 1,3,7 1,3,7 是 9 9 9 的祖先, 3 , 7 , 9 3,7,9 3,7,9 是 1 1 1 的子孙。
- 节点 1 1 1 有 2 2 2 个子节点,我们认为,节点 1 1 1 的度是 2 2 2。叶子结点的度为 0 0 0。
- 度不为零的(非叶子节点)节点称为分支节点。
- 一棵树的层数称为树的深度/树的高度。单独的根节点深度为 0 0 0 或 1 1 1。图示的树的深度为 3 3 3 或 4 4 4。
- 空集合也是树,称为空树。其没有节点。
- 假如去掉了根节点,可以发现,就形成了一棵根节点为 2 2 2 的树,一棵根节点为 3 3 3 的树。我们认为这两棵树是根节点为 1 1 1 的树的子树。假如这两棵树属于同一集合且不相交,我们就说这个集合时森林。
2. 树的性质
- 一棵非空树有且只有一个根节点。
- 每一个非根节点有且只有一个父节点。
- 每一个叶子节点没有子节点。
- 一棵树有且只有 n − 1 n-1 n−1 条边。
3. 树的存储
我们主要介绍其中两种。
3-1. 邻接矩阵
顾名思义,其是一个二维数组。
定义方式:
bool tree[N][N];
tree
i
,
j
\text{tree}_{i,j}
treei,j 表示节点
i
,
j
i,j
i,j 之间是否连通。
如果要将节点
u
u
u 添加儿子
v
v
v,那么操作就是 tree[u][v]=1;
。
将上图的树存储进去,就是这样的:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
访问所有节点的儿子:
for(int i=1;i<=n;i++)//n=9
{
cout<<i<<": ";
for(int j=1;j<=n;j++)
{
if(tree[i][j]) cout<<j<<' ';
}
puts("");
}
输出:
1: 2 3
2: 4 5
3: 6 7 8
4:
5:
6:
7: 9
8:
9:
邻接矩阵的优点:简洁明了,方便快捷;
邻接矩阵的缺点:浪费空间,容易被卡。
只建议数据中结点数
≤
8
×
1
0
3
\le 8\times 10^3
≤8×103 时使用。
3-2. 邻接表
我们也可以采用其中一种叫做邻接表的常用存储方法。
定义方式:
vector<int>tree[N];
在
tree
i
\text{tree}_i
treei 的 vector 中,我们要存储什么呢?
没错,就是节点
i
i
i 的儿子。
如果要将节点
u
u
u 添加儿子
v
v
v,那么操作就是 tree[u].push_back(v);
。
将上图的树存储进去,就是这样的:
节点编号 | 存储情况 |
---|---|
1 | 2,3 |
2 | 4,5 |
3 | 6,7,8 |
4 | (空) |
5 | (空) |
6 | (空) |
7 | 9 |
8 | (空) |
9 | (空) |
如果要访问,也很简单(示例代码为访问上述树的儿子):
for(int i=1;i<=n;i++)//n=9
{
cout<<i<<": ";
for(auto j:tree[i])
{
cout<<j<<' ';
}
puts("");
}
输出:
1: 2 3
2: 4 5
3: 6 7 8
4:
5:
6:
7: 9
8:
9:
邻接表的优点在于:方便、省空间、速度较快,是通用的存储方法。
4. 树的遍历
4-1. 先/前序(根)遍历(深度优先遍历)
先序遍历的遍历顺序是根→按序遍历子树。
类似于深度优先搜索,先序遍历就是一头猛扎到底,不到黄河不回头。
示例代码(输出树的先序遍历顺序):
void pre(int p)//p 为当前节点编号
{
cout<<p<<' ';
for(auto i:tree[p])
{
pre(i);
}
}
若为上面的树,则输出 1 2 4 5 3 6 7 9 8
。
4-2. 后序(根)遍历
后序遍历顺序和先序遍历相反,为按序遍历子树→根。
示例代码(输出树的后序遍历顺序):
void post(int p)//p 为当前节点编号
{
for(auto i:tree[p])
{
post(i);
}
cout<<p<<' ';//可以发现,只是改动了输出位置
}
若为上面的树,则输出 4 5 2 6 9 7 8 3 1
。
4-3. 层次遍历(宽/广度优先遍历)
层次遍历的写法类似广度优先搜索,使用队列存储节点,然后输出每一层的节点。
示例代码(输出树的层次遍历):
queue<int>q;
void bfs()
{
q.push(root);//root 为根节点
while(!q.empty())
{
int x=q.front();
q.pop();
cout<<x<<' ';
for(auto i:tree[x])
{
q.push(i);
}
}
}
若为上面的树,则输出 1 2 3 4 5 6 7 8 9
。
4-4. 叶子节点遍历
顾名思义,只遍历叶子节点,那我们随便写就可以了。
dfs 写法:
void dfs(int p)//p 为当前节点编号
{
if(tree[p].empty())
{
cout<<p<<' ';
return;
}
for(auto i:tree[p])
{
pre(i);
}
}
bfs 写法:
queue<int>q;
void bfs()
{
q.push(root);//root 为根节点
while(!q.empty())
{
int x=q.front();
q.pop();
if(tree[x].empty()) cout<<x<<' ';
else
{
for(auto i:tree[x])
{
q.push(i);
}
}
}
}
枚举写法:
for(int i=1;i<=n;i++)//n 为节点数
{
if(tree[i].empty()) cout<<i<<' ';
}
5. 练习
- 给定节点关系,输出先序、后序、层次、叶节点遍历的结果(根节点不一定是 1 1 1)。
- 给定节点关系,求树的深度。
- 给定节点关系,求出两个节点相距距离最长是多少(父子节点的边算一个单位长度)。