「数据结构详解·一」树的初步

1. 树的定义、构成和术语

树(Tree)是最重要的数据结构之一,它是由 n ( n ∈ N ) n(n \in \mathbb{N}) n(nN) 个节点(也会被写作“结点”)构成的一个集合。其具有层次关系。树是递归定义的。
如下图,这就是一棵普通的树。

  • 最上面的 1 1 1 称为根节点,最下面的 4 , 5 , 6 , 9 , 8 4,5,6,9,8 4,5,6,9,8 称为叶子节点
  • 每两个节点之间相连线的称为
  • 1 1 1 的下方与其相连的有 2 , 3 2,3 2,3,我们就说,节点 1 1 1 2 , 3 2,3 2,3父节点(父亲), 2 , 3 2,3 2,3 1 1 1子节点(儿子), 2 , 3 2,3 2,3 互为兄弟节点
  • 节点 9 9 9 的父亲是 7 7 7 7 7 7 的父亲是 3 3 3 3 3 3 的父亲是 1 1 1。我们认为, 1 , 3 , 7 1,3,7 1,3,7 9 9 9祖先 3 , 7 , 9 3,7,9 3,7,9 1 1 1子孙
  • 节点 1 1 1 2 2 2 个子节点,我们认为,节点 1 1 1 2 2 2。叶子结点的度为 0 0 0
  • 度不为零的(非叶子节点)节点称为分支节点
  • 一棵树的层数称为树的深度/树的高度。单独的根节点深度为 0 0 0 1 1 1。图示的树的深度为 3 3 3 4 4 4
  • 空集合也是树,称为空树。其没有节点。
  • 假如去掉了根节点,可以发现,就形成了一棵根节点为 2 2 2 的树,一棵根节点为 3 3 3 的树。我们认为这两棵树是根节点为 1 1 1 的树的子树。假如这两棵树属于同一集合且不相交,我们就说这个集合时森林

2. 树的性质

  • 一棵非空树有且只有一个根节点
  • 每一个非根节点有且只有一个父节点
  • 每一个叶子节点没有子节点
  • 一棵树有且只有 n − 1 n-1 n1 条边

3. 树的存储

我们主要介绍其中两种。

3-1. 邻接矩阵

顾名思义,其是一个二维数组。
定义方式:

bool tree[N][N];

tree i , j \text{tree}_{i,j} treei,j 表示节点 i , j i,j i,j 之间是否连通。
如果要将节点 u u u 添加儿子 v v v,那么操作就是 tree[u][v]=1;
将上图的树存储进去,就是这样的:

123456789
1011000000
2000110000
3000001110
4000000000
5000000000
6000000000
7000000001
8000000000
9000000000

访问所有节点的儿子:

for(int i=1;i<=n;i++)//n=9
{
	cout<<i<<": ";
	for(int j=1;j<=n;j++)
	{
		if(tree[i][j]) cout<<j<<' ';
	}
	puts("");
}

输出:

1: 2 3
2: 4 5
3: 6 7 8
4: 
5: 
6:
7: 9
8: 
9: 

邻接矩阵的优点:简洁明了,方便快捷;
邻接矩阵的缺点:浪费空间,容易被卡。
只建议数据中结点数 ≤ 8 × 1 0 3 \le 8\times 10^3 8×103 时使用。

3-2. 邻接表

我们也可以采用其中一种叫做邻接表的常用存储方法。
定义方式:

vector<int>tree[N];

tree i \text{tree}_i treei 的 vector 中,我们要存储什么呢?
没错,就是节点 i i i 的儿子。
如果要将节点 u u u 添加儿子 v v v,那么操作就是 tree[u].push_back(v);
将上图的树存储进去,就是这样的:

节点编号存储情况
12,3
24,5
36,7,8
4(空)
5(空)
6(空)
79
8(空)
9(空)

如果要访问,也很简单(示例代码为访问上述树的儿子):

for(int i=1;i<=n;i++)//n=9
{
	cout<<i<<": ";
	for(auto j:tree[i])
	{
		cout<<j<<' ';
	}
	puts("");
}

输出:

1: 2 3
2: 4 5
3: 6 7 8
4: 
5: 
6:
7: 9
8: 
9: 

邻接表的优点在于:方便、省空间、速度较快,是通用的存储方法。

4. 树的遍历

4-1. 先/前序(根)遍历(深度优先遍历)

先序遍历的遍历顺序是根→按序遍历子树
类似于深度优先搜索,先序遍历就是一头猛扎到底,不到黄河不回头。
示例代码(输出树的先序遍历顺序):

void pre(int p)//p 为当前节点编号
{
	cout<<p<<' ';
	for(auto i:tree[p])
	{
		pre(i);
	}
}

若为上面的树,则输出 1 2 4 5 3 6 7 9 8

4-2. 后序(根)遍历

后序遍历顺序和先序遍历相反,为按序遍历子树→根
示例代码(输出树的后序遍历顺序):

void post(int p)//p 为当前节点编号
{
	for(auto i:tree[p])
	{
		post(i);
	}
	cout<<p<<' ';//可以发现,只是改动了输出位置
}

若为上面的树,则输出 4 5 2 6 9 7 8 3 1

4-3. 层次遍历(宽/广度优先遍历)

层次遍历的写法类似广度优先搜索,使用队列存储节点,然后输出每一层的节点。
示例代码(输出树的层次遍历):

queue<int>q;
void bfs()
{
	q.push(root);//root 为根节点
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		cout<<x<<' ';
		for(auto i:tree[x])
		{
			q.push(i);
		}
	}
}

若为上面的树,则输出 1 2 3 4 5 6 7 8 9

4-4. 叶子节点遍历

顾名思义,只遍历叶子节点,那我们随便写就可以了。
dfs 写法:

void dfs(int p)//p 为当前节点编号
{
	if(tree[p].empty())
	{
		cout<<p<<' ';
		return;
	}
	for(auto i:tree[p])
	{
		pre(i);
	}
}

bfs 写法:

queue<int>q;
void bfs()
{
	q.push(root);//root 为根节点
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		if(tree[x].empty()) cout<<x<<' ';
		else
		{
			for(auto i:tree[x])
			{
				q.push(i);
			}
		}
	}
}

枚举写法:

for(int i=1;i<=n;i++)//n 为节点数
{
	if(tree[i].empty()) cout<<i<<' ';
}

5. 练习

  1. 给定节点关系,输出先序、后序、层次、叶节点遍历的结果(根节点不一定是 1 1 1)。
  2. 给定节点关系,求树的深度。
  3. 给定节点关系,求出两个节点相距距离最长是多少(父子节点的边算一个单位长度)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值