题目在这里呀
这题真的是把我坑到了(其实很简单啊可我又傻了
题意
有两个操作,一个是将a位置上的数改成b,一个是计算a到b的区间内最长子序列的长度。
题解
很常规啊,线段树上做区间合并,线段树的每个点需要记下三个值,最左边的连续子序列长度t[rt].l,最右边的连续子序列长度t[rt].r,和整个区间的最长连续子序列长度t[rt].sum。pushup的地方注意几点。
1、将两个小区间合并成大区间,将左区间的l向上传,右区间的r向上传。左区间和右区间的sum取max向上传。
2、这样还不能彻底地保证正确,所以如果左区间整个都是单调子序列,或者右区间是,那么就要对l和r进行对应的修改,同样的大区间的sum可以从左区间的r+右区间的l 转过来。
注意这两点这题就可以很轻松的解决啦~
可我真的好笨,一开始数组开小(不知道为什么
然后发现WA,然后半小时后发现我样例最后一个是错了qaq
最后。。发现mid定为了全局变量可能会错,然后改回来就对了?!
(我是真的傻啊)
//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 200000+100
using namespace std;
int T,n,m,l,r,a[N];
char opt[5];
struct segment{
int sum,l,r;
}t[N+N+N+N];
inline void pushup(int rt,int l,int r)
{
int mid=(l+r)>>1;
t[rt].l=t[rt+rt].l;t[rt].r=t[rt+rt+1].r;
t[rt].sum=max(t[rt+rt].sum,t[rt+rt+1].sum);
if(a[mid]<a[mid+1]){
if(t[rt].l==mid-l+1) t[rt].l+=t[rt+rt+1].l;
if(t[rt].r==r-mid) t[rt].r+=t[rt+rt].r;
t[rt].sum=max(t[rt].sum,t[rt+rt].r+t[rt+rt+1].l);
}
}
void build(int rt,int l,int r)
{
if(l==r){
t[rt].sum=t[rt].l=t[rt].r=1;
return;
}
int mid=(l+r)>>1;
build(rt+rt,l,mid);
build(rt+rt+1,mid+1,r);
pushup(rt,l,r);
}
void modify(int rt,int l,int r,int x)
{
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) modify(rt+rt,l,mid,x);
else modify(rt+rt+1,mid+1,r,x);
pushup(rt,l,r);
}
int query(int rt,int l,int r,int x,int y)
{
if(x<=l && r<=y) return t[rt].sum;
int mid=(l+r)>>1;
if(y<=mid) return query(rt+rt,l,mid,x,y);
else if(x>mid) return query(rt+rt+1,mid+1,r,x,y);
int s1=query(rt+rt,l,mid,x,mid),s2=query(rt+rt+1,mid+1,r,mid+1,y);
int ans=max(s1,s2);
if(a[mid]<a[mid+1]) ans=max(ans,min(t[rt+rt].r,mid-x+1)+min(t[rt+rt+1].l,y-mid));
return ans;
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
while(m--){
scanf("%s%d%d",opt,&l,&r);
l++;
if(opt[0]=='U'){a[l]=r;modify(1,1,n,l);}
else{r++;printf("%d\n",query(1,1,n,l,r));}
}
}
return 0;
}