HDU 1423 && ZOJ 2432 (LCIS模板)

本文介绍了如何解决最长公共递增子序列(LCIS)问题,通过定义状态和状态转移方程进行动态规划。同时,通过与0/1背包问题的比较,展示了如何优化空间。并提供了多组测试样例及其解决方案。
摘要由CSDN通过智能技术生成


定义状态

F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度。

状态转移方程:

①F[i][j] = F[i-1][j] (a[i] != b[j])

②F[i][j] = max(F[i-1][k]+1) (1 <= k <= j-1 && b[j] > b[k])

现在我们来说为什么会是这样的状态转移方程呢?

对于①,因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0那么就说明a[1]..a[i]中必然有一个整数a[k]等于b[j],因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。

对于②,前提是a[i] == b[j],我们需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。并且也不能是i-2,因为i-1必然比i-2更优。第二维呢?那就需要枚举b[1]...b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑F[i][j]=F[i-1][j]的决策呢?答案是不需要。因为如果b[j]不和a[i]配对,那就是和之前的a[1]...a[j-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i`配对则是max(F[i`-1][k])+1。


以上的代码的时间复杂度是O(n^3),那我们怎么去优化呢?通过思考发现,第三层循环找最大值是否可以优化呢?我们能否直接把枚举最大的f[i-1][k]值直接算出来呢?假设存在这么一个序列a[i] == b[j],我们继续看状态转移方程②,会发现b[j] > b[k],即当a[i] == b[j]时,可以 推出a[i] > b[k] ,那么有了这个表达式我们可以做什么呢?可以发现,我们可以维护一个MAX值来储存最大的f[i-1][k]值。即只要有a[i] > a[j]的地方,那么我们就可以更新最大值,所以,当a[i] == b[j]的时候,f[i][j] = MAX+1,即可


可以发现,其实上面的代码有些地方与0/1背包很相似,即每次用到的只是上一层循环用到的值,即f[i-1][j],那么我们可以像优化0/1背包问题利用滚动数组来优化空间。如果是求最长公共下降子序列呢?很明显嘛,把状态定义改动一下,即f[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCDS的长度,具体实现的时候只要把a[i] > b[j]改为a[i] < b[j]就可以啦。

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值