BZOJ 2956 模积和 (分块)

39 篇文章 0 订阅
5 篇文章 0 订阅

题目在这里呀!

题意

BZOJ 1257的加强版,多了一个?那就把它展开来啦。

i=1nj=1m(nmodi)(mmodj)(i!=j)

=i=1nj=1m(nmodi)(mmodj)i=1n(nnii)(mmii)

=i=1nj=1m(nmodi)(mmodj)i=1n(nmnmiimnii+nimii2)

用公式求出 i i2 即可。
有模数那就把乘变成逆元吧(全都要变啊qwq)
本来大意了一下所以错了好多次emm
还以为是longlong的锅

//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int mod=19940417;
const long long inv6=3323403;
const long long inv2=9970209;
long long n,m,next;
long long ans,s1,s2,s3;

long long calc(long long x)
{
    long long res=x*x % mod;
    for(long long i=1;i<=x;i=next+1){
        long long now=x/i;
        next=x/now;
        if(next>x) next=x; 
        res=((res-(now*(i+next) % mod * (next-i+1) % mod * inv2 % mod)) % mod+mod) % mod;
    }
    return res;
}

inline long long sum(long long x)
{
    return x*(x+1) % mod * (x+x+1) % mod * inv6 % mod;
}

int main()
{
    scanf("%lld%lld",&n,&m);
    ans=calc(n)*calc(m) % mod;
    next=0;
    if(n>m) swap(n,m);
    for(long long i=1;i<=n;i=next+1){
        next=min(n/(n/i),m/(m/i));
        s1=(long long)n*m % mod * (next-i+1) % mod;
        s2=(long long)(n/i)*(m/i) % mod * (sum(next)-sum(i-1)+mod) % mod;
        s3=(long long)(n/i*m+m/i*n) % mod *(i+next) % mod * (next-i+1) % mod * inv2 % mod;
        ans=(ans-(s1+s2-s3) % mod + mod) % mod;
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值