LightGBM标签特征应用小结

本文介绍了在使用LightGBM进行小数据集回归预测时,直接处理标签特征与哑编码的效果比较。在数据集中,标签特征为当周第几天和当月第几天。实验结果显示,虽然直接使用LightGBM的标签特征参数相比将标签特征转化为定量特征有微小提升,但OneHotEncoder编码后的预测准确率更高。对于标签特征重要且数量较多的情况,作者建议尝试CatBoost模型,并计划进行后续研究。
摘要由CSDN通过智能技术生成

昨天我用LightGBM对一个小数据集进行了回归预测,其中特征部分包含定性特征(标签特征),因为在LightGBM官方文档中看到LightGBM可以通过‘categorical_feature’参数直接处理标签特征,而且计算速度更快,效果更佳。

文档参数说明如下:

categorical_feature ?︎, default = "", type = multi-int or string, aliases: cat_featurecategorical_columncat_column

  • used to specify categorical features
  • use number for index, e.g. categorical_feature=0,1,2 means column_0, column_1 and column_2 are categorical features
  • add a prefix name: for column name, e.g. categorical_feature=name:c1,c2,c3 means c1, c2 and c3 are categorical features
  • Note: only supports categorical with int type
  • Note: ind
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值