选择排序算法、时间复杂度和稳定

选择排序

算法原理

  • 将数据分为有序部分和无序部分。
  • 在无序部分找出最大的元素,将最大的元素和无序部分最后一个元素交换,使得无序部分最后一个元素并入有序部分。
  • 重复第二步,直到无序部分都插入到有序部分结束。

算法分析

排序的思想就是维护一个有序的部分,将无序部分中最大的元素和最后一个元素相交换,交换后无序部分的最后一个元素也将有序。

通俗的讲,选择排序的原理就是:

先从头遍历一遍找出最大元素,最大元素和最后一个元素相交换。

再从头遍历到倒数第二个元素找出最大元素,最大元素和倒数第二个元素相交换。

直到所有元素都有序为止。

代码实现

/**
 * @Title: selectSort
 * @Description: 选择排序
 * @param: array
 */
public static void selectSort(int[] array) {
    int n = array.length;
    for (int i = 0; i < n; i++) {
        //记录最大元素的下标
        int max = 0;
        for (int j = 0; j<n-i; j++) {
            if (array[j] > array[max]) {
                max = j;
            }
        }
        //最大元素和无序部分最后一个元素交换
        if (max != n-1-i) {
            swap(array, max, n-1-i);
        }
    }
}

/**
 * @Title: swap
 * @Description: 交换数组array中下标为i和j的元素
 * @param: array
 * @param: i
 * @param: j
 */
private static void swap(int[] array, int i, int j) {
    array[i] = array[i] + array[j];
    array[j] = array[i] - array[j];
    array[i] = array[i] - array[j];
}

时间复杂度和算法稳定性

从代码中可以看出一共遍历了n + n-1 + n-2 + … + 2 + 1 = n * (n+1) / 2 = 0.5 * n ^ 2 + 0.5 * n,那么时间复杂度是O(N^2)。

因为在无序部分最大元素和有序部分第一个元素相等的时候,可以将无序部分最大元素放在前面,所以选择排序是稳定的。

相关代码都在github上:https://github.com/LebronChenX/sort

喜欢这篇文章的朋友,欢迎长按下图关注公众号lebronchen,第一时间收到更新内容。
扫码关注

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页