初识定积分系列-球体体积的解析解

观看本文所需基础:

基本求导法则,定积分基础,圆形面积公式

基本思路:首先对一个半径为R的球体进行水平微分(可以理解为将球体分割成很多个厚度无限趋近于零的类圆柱体,由于厚度无限小,在某种程度上可以将该处的曲率忽视,将其看作是圆柱体),分别求出微元(每一个厚度为无限小的圆柱体的体积)然后全部相加,就是球体体积。

假设有一条过球心的,长度为2R线段。一个动点E在该线段上移动。在点E处做垂直于该线段的直线AB。直线AB与球体的重叠部分就是该处微元的的直径。接下来,我们必须知道自变量(E在线段上的位置)与应变量(微元直径)之间的对应关系。

圆的坐标系方程:

x^{^{2}}+y^{2}=R^{2}

整理得:

y=(R^{2}-x^{2})^\frac{1}{2}

所以微元在点E的位置为x时的体积是:

πy^{2}•dx

定积分:

设球体半径为R,所以可进行积分:

\int_{-R}^{R} π(R^{2}-x^{2})dx

由于y=R^{2}-x^{2}是偶函数,所以定积分区间可做一些转换:

2\int_{0}^{R} π(R^{2}-x^{2})dx

再整理(导出所有常数)得:

2π \int _{0}^{R}(R^{2}-x^{2})dx

对被积函数进行积分得:

2π •R^{2}•x +\frac{1}{3}x^{3}

由牛顿-莱布尼茨公式得:

F(R) - F(0) = \int _{0}^{R}(R^{2}-x^{2})dx

其中F(x)就是函数R^{2}•x -\frac{1}{3}x^{3}

将R代入x得:

V = 2π•(R^{3}-\frac{1}{3}R^{3})

整理得:

V = \frac{4}{3}πR^{3}

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值