资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
思路:因为是逐行输出,且每一行需要用到上一行的数据,所以考虑递归
#include <iostream>
using namespace std;
int s[34] = { 0,1 };//装着上一行的数据
int ss[34] = { 0 };//装着当前行的数据
void Hang(int n)
{
if (n != 2)Hang(n - 1); //让当前行 递归到第二行
for (size_t i = 1;; i++)
{
if (i == n)//当要输出最后一位时
{
cout << 1 << endl;
s[n] = 1;//直接让其等于1
break;//循环至当前行最后一位时退出
}
int temp = s[i - 1] + s[i];//计算当前位的值
cout << temp << " ";
ss[i] = temp;//为使其不干扰上一行数据,将其保存在新数组中
}
//更新上一行的数据
for (size_t i = 0; i < n; i++)
{
s[i] = ss[i];
}
}
int main()
{
int n = 0;
cin >> n;
//第一行没有前一行,情况特殊
if(n==1)cout << 1;
else
{
cout << 1 << endl;
Hang(n);
}
return 0;
}
大佬思路1:先把杨辉三角全部构造,并装在二维数组中,再根据要求打印几行
#include <stdio.h>
int main(void)
{
int i, j, n =0 , a[34][34] = {0}; //初始化
scanf("%d", &n);
for(i=0; i<34; i++)
a[i][0] = 1;
for(i=1; i<34; i++)
for(j=1; j<=i; j++)
a[i][j] = a[i-1][j-1] + a[i-1][j];
for(i=0; i<n; i++)
{
for(j=0; j<=i; j++)
printf("%d ", a[i][j]);
printf("\n");
}
return 0;
}