FIR滤波器分类
类型 | 阶数&对称性 | 相位特性 | 滤波器类型 | 关键频率点特性 | 典型应用 |
---|---|---|---|---|---|
Type-1 | 奇对称 | 线性相位,无相移 | 低通/高通/带通/带阻 | 全频率相应无强制零点 | 通用滤波器设计 |
Type-2 | 偶对称 | 线性相位,无相移 | 低通/带通(无法设计高通/带阻) | 在Nyquist频率( w = π w=\pi w=π)处增益为零 | 低通或带通(无需高频响应) |
Type-3 | 奇反对称 | 线性相位,固定90°相移 | 希尔伯特变换器/微分器 | w = 0 , π w=0,\pi w=0,π处增益为零 | 信号正交处理/微分运算 |
Type-4 | 偶反对称 | 线性相位,固定90°相移 | 高通/带阻/希尔伯特变换器 | w = 0 w=0 w=0处增益为零 | 高通滤波器/单边带调制 |
Type-1推导
滤波器阶数M为奇数,
h
(
n
)
=
h
(
M
−
1
−
n
)
,
0
≤
n
≤
M
−
1
h(n)=h(M-1-n), 0\leq n \leq M-1
h(n)=h(M−1−n),0≤n≤M−1
频响推导如下:
H
(
e
j
w
)
=
∑
n
=
0
M
−
1
h
(
n
)
e
−
j
w
n
h
(
n
)
=
h
(
M
−
1
−
n
)
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
h
(
M
−
1
2
)
e
−
j
w
M
−
1
2
+
∑
n
=
0
M
−
1
2
−
1
h
(
n
)
(
e
−
j
w
n
+
e
−
j
w
(
M
−
1
−
n
)
)
=
h
(
M
−
1
2
)
e
−
j
w
M
−
1
2
+
e
−
j
w
M
−
1
2
∑
n
=
0
M
−
1
2
−
1
2
h
(
n
)
cos
[
w
(
M
−
1
2
−
n
)
]
=
e
−
j
w
M
−
1
2
(
h
(
M
−
1
2
)
+
∑
n
=
0
M
−
1
2
−
1
2
h
(
n
)
cos
[
w
(
M
−
1
2
−
n
)
]
)
k
=
M
−
1
2
−
n
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
k
=
0
M
−
1
2
2
h
(
M
−
1
2
−
k
)
cos
[
w
k
]
)
e
−
j
w
M
−
1
2
a
(
n
)
=
2
h
(
M
−
1
2
−
n
)
,
n
=
[
1
,
⋯
,
M
−
1
2
]
,
a
(
0
)
=
h
(
M
−
1
2
)
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
n
=
0
M
−
1
2
a
(
n
)
cos
[
w
n
]
)
e
−
j
w
M
−
1
2
\begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=h(M-1-n)}_{substitution} \\ &=h({M-1\over 2})e^{-jw{M-1\over 2}}+\sum_{n=0}^{{M-1\over 2}-1}h(n)(e^{-jwn}+e^{-jw(M-1-n)})\\ &=h({M-1\over 2})e^{-jw{M-1\over 2}}+e^{-jw{M-1\over 2}}\sum_{n=0}^{{M-1\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\\ &=e^{-jw{M-1\over 2}}\Big(h({M-1\over 2})+\sum_{n=0}^{{M-1\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\Big)\\ &\underbrace{k={M-1\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=0}^{{M-1\over 2}}2h({M-1\over 2}-k)\cos[wk]\Big)e^{-jw{M-1\over 2}}\\ &\underbrace{a(n)=2h({M-1\over 2}-n),n=[1,\cdots,{M-1\over 2}],a(0)=h({M-1\over 2})}_{substitution} \\ &=\Big(\sum_{n=0}^{{M-1\over 2}}a(n)\cos[wn]\Big)e^{-jw{M-1\over 2}}\\ \end{aligned}
H(ejw)=n=0∑M−1h(n)e−jwnsubstitution
h(n)=h(M−1−n)=h(2M−1)e−jw2M−1+n=0∑2M−1−1h(n)(e−jwn+e−jw(M−1−n))=h(2M−1)e−jw2M−1+e−jw2M−1n=0∑2M−1−12h(n)cos[w(2M−1−n)]=e−jw2M−1(h(2M−1)+n=0∑2M−1−12h(n)cos[w(2M−1−n)])substitution
k=2M−1−n=(k=0∑2M−12h(2M−1−k)cos[wk])e−jw2M−1substitution
a(n)=2h(2M−1−n),n=[1,⋯,2M−1],a(0)=h(2M−1)=(n=0∑2M−1a(n)cos[wn])e−jw2M−1
由此可知:Type-1滤波器的振幅相应为
H
r
(
w
)
=
∑
n
=
0
M
−
1
2
a
(
n
)
cos
[
w
n
]
H_r(w)=\sum_{n=0}^{{M-1\over 2}}a(n)\cos[wn]
Hr(w)=∑n=02M−1a(n)cos[wn],相位为
∠
H
(
e
j
w
)
=
−
M
−
1
2
w
\angle H(e^{jw})=-{M-1\over 2}w
∠H(ejw)=−2M−1w,其中
−
M
−
1
2
-{M-1\over 2}
−2M−1为滤波器的群延迟。
Type-2推导
滤波器阶数M为偶数,
h
(
n
)
=
h
(
M
−
1
−
n
)
,
0
≤
n
≤
M
−
1
h(n)=h(M-1-n), 0\leq n \leq M-1
h(n)=h(M−1−n),0≤n≤M−1
频响推导如下:
H
(
e
j
w
)
=
∑
n
=
0
M
−
1
h
(
n
)
e
−
j
w
n
h
(
n
)
=
h
(
M
−
1
−
n
)
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
∑
n
=
0
M
2
−
1
h
(
n
)
(
e
−
j
w
n
+
e
−
j
w
(
M
−
1
−
n
)
)
=
e
−
j
w
M
−
1
2
∑
n
=
0
M
2
−
1
2
h
(
n
)
cos
[
w
(
M
−
1
2
−
n
)
]
k
=
M
2
−
n
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
k
=
1
M
2
2
h
(
M
2
−
k
)
cos
[
w
(
k
−
1
2
)
]
)
e
−
j
w
M
−
1
2
b
(
n
)
=
2
h
(
M
2
−
n
)
,
n
=
[
1
,
⋯
,
M
2
]
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
n
=
1
M
2
b
(
n
)
cos
[
w
(
n
−
1
2
)
]
)
e
−
j
w
M
−
1
2
\begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M\over 2}-1}h(n)(e^{-jwn}+e^{-jw(M-1-n)})\\ &=e^{-jw{M-1\over 2}}\sum_{n=0}^{{M\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\\ &\underbrace{k={M\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=1}^{{M\over 2}}2h({M\over 2}-k)\cos[w(k-{1\over 2})]\Big)e^{-jw{M-1\over 2}}\\ &\underbrace{b(n)=2h({M\over 2}-n),n=[1,\cdots,{M\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M\over 2}}b(n)\cos[w(n-{1\over 2})]\Big)e^{-jw{M-1\over 2}}\\ \end{aligned}
H(ejw)=n=0∑M−1h(n)e−jwnsubstitution
h(n)=h(M−1−n)=n=0∑2M−1h(n)(e−jwn+e−jw(M−1−n))=e−jw2M−1n=0∑2M−12h(n)cos[w(2M−1−n)]substitution
k=2M−n=(k=1∑2M2h(2M−k)cos[w(k−21)])e−jw2M−1substitution
b(n)=2h(2M−n),n=[1,⋯,2M]=(n=1∑2Mb(n)cos[w(n−21)])e−jw2M−1
由此可知:Type-2滤波器的振幅相应为
H
r
(
w
)
=
∑
n
=
1
M
2
b
(
n
)
cos
[
w
(
n
−
1
2
)
]
H_r(w)=\sum_{n=1}^{{M\over 2}}b(n)\cos[w(n-{1\over 2})]
Hr(w)=∑n=12Mb(n)cos[w(n−21)],相位为
∠
H
(
e
j
w
)
=
−
M
−
1
2
w
\angle H(e^{jw})=-{M-1\over 2}w
∠H(ejw)=−2M−1w,其中
−
M
−
1
2
-{M-1\over 2}
−2M−1为滤波器的群延迟。
在
w
=
π
,
H
r
(
0
)
=
0
w=\pi,H_r(0)=0
w=π,Hr(0)=0,导致高频信号无法通过适合高通和带阻。
Type-3推导
滤波器阶数M为奇数,
h
(
n
)
=
−
h
(
M
−
1
−
n
)
,
0
≤
n
≤
M
−
1
,
h
(
M
−
1
2
)
=
0
h(n)=-h(M-1-n), 0\leq n \leq M-1,h({M-1\over 2})=0
h(n)=−h(M−1−n),0≤n≤M−1,h(2M−1)=0
频响推导如下:
H
(
e
j
w
)
=
∑
n
=
0
M
−
1
h
(
n
)
e
−
j
w
n
h
(
n
)
=
−
h
(
M
−
1
−
n
)
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
∑
n
=
0
M
−
1
2
−
1
h
(
n
)
(
e
−
j
w
n
−
e
−
j
w
(
M
−
1
−
n
)
)
=
j
e
−
j
w
M
−
1
2
∑
n
=
0
M
−
1
2
−
1
2
h
(
n
)
sin
[
w
(
M
−
1
2
−
n
)
]
k
=
M
−
1
2
−
n
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
k
=
0
M
−
1
2
h
(
M
−
1
2
−
k
)
sin
[
w
k
]
)
e
−
j
(
π
2
−
w
M
−
1
2
)
c
(
n
)
=
2
h
(
M
−
1
2
−
n
)
,
n
=
[
1
,
⋯
,
M
−
1
2
]
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
n
=
1
M
−
1
2
c
(
n
)
sin
[
w
n
]
)
e
−
j
(
π
2
−
w
M
−
1
2
)
\begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=-h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M-1\over 2}-1}h(n)(e^{-jwn}-e^{-jw(M-1-n)})\\ &=je^{-jw{M-1\over 2}}\sum_{n=0}^{{M-1\over 2}-1}2h(n)\sin[w({M-1\over 2}-n)]\\ &\underbrace{k={M-1\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=0}^{{M-1\over 2}}h({M-1\over 2}-k)\sin[wk]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ &\underbrace{c(n)=2h({M-1\over 2}-n),n=[1,\cdots,{M-1\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M-1\over 2}}c(n)\sin[wn]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ \end{aligned}
H(ejw)=n=0∑M−1h(n)e−jwnsubstitution
h(n)=−h(M−1−n)=n=0∑2M−1−1h(n)(e−jwn−e−jw(M−1−n))=je−jw2M−1n=0∑2M−1−12h(n)sin[w(2M−1−n)]substitution
k=2M−1−n=(k=0∑2M−1h(2M−1−k)sin[wk])e−j(2π−w2M−1)substitution
c(n)=2h(2M−1−n),n=[1,⋯,2M−1]=(n=1∑2M−1c(n)sin[wn])e−j(2π−w2M−1)
由此可知:Type-3滤波器的振幅相应为 H r ( w ) = ∑ n = 1 M − 1 2 c ( n ) sin [ w n ] H_r(w)=\sum_{n=1}^{{M-1\over 2}}c(n)\sin[wn] Hr(w)=∑n=12M−1c(n)sin[wn],相位为 ∠ H ( e j w ) = π 2 − M − 1 2 w \angle H(e^{jw})={\pi\over 2}-{M-1\over 2}w ∠H(ejw)=2π−2M−1w,其中 − M − 1 2 -{M-1\over 2} −2M−1为滤波器的群延迟。
- 相位响应:严格的线性相位,且附加 90° 固定相移(由反对称性导致)。
- 幅度响应:在
w
=
0
,
π
,
H
r
(
0
)
=
H
r
(
π
)
=
0
w=0,\pi,H_r(0)=H_r(\pi)=0
w=0,π,Hr(0)=Hr(π)=0处强制增益为零。
适合Hilbert变换器和微分器等需要正交相移或抑制直流/高频分量的场景。
Type-4推导
滤波器阶数M为偶数,
h
(
n
)
=
−
h
(
M
−
1
−
n
)
,
0
≤
n
≤
M
−
1
h(n)=-h(M-1-n), 0\leq n \leq M-1
h(n)=−h(M−1−n),0≤n≤M−1
频响推导如下:
H
(
e
j
w
)
=
∑
n
=
0
M
−
1
h
(
n
)
e
−
j
w
n
h
(
n
)
=
−
h
(
M
−
1
−
n
)
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
∑
n
=
0
M
2
−
1
h
(
n
)
(
e
−
j
w
n
−
e
−
j
w
(
M
−
1
−
n
)
)
=
j
e
−
j
w
M
−
1
2
∑
n
=
0
M
2
−
1
2
h
(
n
)
sin
[
w
(
M
−
1
2
−
n
)
]
k
=
M
2
−
n
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
k
=
1
M
2
2
h
(
M
2
−
k
)
sin
[
w
(
k
−
1
2
)
]
)
e
−
j
(
π
2
−
w
M
−
1
2
)
d
(
n
)
=
2
h
(
M
2
−
n
)
,
n
=
[
1
,
⋯
,
M
2
]
⏟
s
u
b
s
t
i
t
u
t
i
o
n
=
(
∑
n
=
1
M
2
d
(
n
)
sin
[
w
(
n
−
1
2
)
]
)
e
−
j
(
π
2
−
w
M
−
1
2
)
\begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=-h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M\over 2}-1}h(n)(e^{-jwn}-e^{-jw(M-1-n)})\\ &=je^{-jw{M-1\over 2}}\sum_{n=0}^{{M\over 2}-1}2h(n)\sin[w({M-1\over 2}-n)]\\ &\underbrace{k={M\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=1}^{{M\over 2}}2h({M\over 2}-k)\sin[w(k-{1\over 2})]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ &\underbrace{d(n)=2h({M\over 2}-n),n=[1,\cdots,{M\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M\over 2}}d(n)\sin[w(n-{1\over 2})]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ \end{aligned}
H(ejw)=n=0∑M−1h(n)e−jwnsubstitution
h(n)=−h(M−1−n)=n=0∑2M−1h(n)(e−jwn−e−jw(M−1−n))=je−jw2M−1n=0∑2M−12h(n)sin[w(2M−1−n)]substitution
k=2M−n=(k=1∑2M2h(2M−k)sin[w(k−21)])e−j(2π−w2M−1)substitution
d(n)=2h(2M−n),n=[1,⋯,2M]=(n=1∑2Md(n)sin[w(n−21)])e−j(2π−w2M−1)
由此可知:Type-4滤波器的振幅相应为
H
r
(
w
)
=
∑
n
=
1
M
2
d
(
n
)
sin
[
w
(
n
−
1
2
)
]
H_r(w)=\sum_{n=1}^{{M\over 2}}d(n)\sin[w(n-{1\over 2})]
Hr(w)=∑n=12Md(n)sin[w(n−21)],相位为
∠
H
(
e
j
w
)
=
π
2
−
M
−
1
2
w
\angle H(e^{jw})={\pi\over 2}-{M-1\over 2}w
∠H(ejw)=2π−2M−1w,其中
−
M
−
1
2
-{M-1\over 2}
−2M−1为滤波器的群延迟。
- 相位响应: w = 0 , e j π / 2 = j w=0,e^{j\pi/2}=j w=0,ejπ/2=j,且附加 90° 固定相移(由反对称性导致)。
- 幅度响应:在
w
=
0
,
H
r
(
0
)
=
0
w=0,H_r(0)=0
w=0,Hr(0)=0,DC处强制为零增益,但在Nyquist频率处非零。
适合设计Hilbert变换器和微分器。
[1]: Digital Signal Processing Using MATLAB
[2]: https://www.jianshu.com/p/c46c67dafe40