4类FIR滤波器对比及推导

FIR滤波器分类

类型阶数&对称性相位特性滤波器类型关键频率点特性典型应用
Type-1奇对称线性相位,无相移低通/高通/带通/带阻全频率相应无强制零点通用滤波器设计
Type-2偶对称线性相位,无相移低通/带通(无法设计高通/带阻)在Nyquist频率( w = π w=\pi w=π)处增益为零低通或带通(无需高频响应)
Type-3奇反对称线性相位,固定90°相移希尔伯特变换器/微分器 w = 0 , π w=0,\pi w=0,π处增益为零信号正交处理/微分运算
Type-4偶反对称线性相位,固定90°相移高通/带阻/希尔伯特变换器 w = 0 w=0 w=0处增益为零高通滤波器/单边带调制

Type-1推导

滤波器阶数M为奇数, h ( n ) = h ( M − 1 − n ) , 0 ≤ n ≤ M − 1 h(n)=h(M-1-n), 0\leq n \leq M-1 h(n)=h(M1n),0nM1
频响推导如下:
H ( e j w ) = ∑ n = 0 M − 1 h ( n ) e − j w n h ( n ) = h ( M − 1 − n ) ⏟ s u b s t i t u t i o n = h ( M − 1 2 ) e − j w M − 1 2 + ∑ n = 0 M − 1 2 − 1 h ( n ) ( e − j w n + e − j w ( M − 1 − n ) ) = h ( M − 1 2 ) e − j w M − 1 2 + e − j w M − 1 2 ∑ n = 0 M − 1 2 − 1 2 h ( n ) cos ⁡ [ w ( M − 1 2 − n ) ] = e − j w M − 1 2 ( h ( M − 1 2 ) + ∑ n = 0 M − 1 2 − 1 2 h ( n ) cos ⁡ [ w ( M − 1 2 − n ) ] ) k = M − 1 2 − n ⏟ s u b s t i t u t i o n = ( ∑ k = 0 M − 1 2 2 h ( M − 1 2 − k ) cos ⁡ [ w k ] ) e − j w M − 1 2 a ( n ) = 2 h ( M − 1 2 − n ) , n = [ 1 , ⋯   , M − 1 2 ] , a ( 0 ) = h ( M − 1 2 ) ⏟ s u b s t i t u t i o n = ( ∑ n = 0 M − 1 2 a ( n ) cos ⁡ [ w n ] ) e − j w M − 1 2 \begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=h(M-1-n)}_{substitution} \\ &=h({M-1\over 2})e^{-jw{M-1\over 2}}+\sum_{n=0}^{{M-1\over 2}-1}h(n)(e^{-jwn}+e^{-jw(M-1-n)})\\ &=h({M-1\over 2})e^{-jw{M-1\over 2}}+e^{-jw{M-1\over 2}}\sum_{n=0}^{{M-1\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\\ &=e^{-jw{M-1\over 2}}\Big(h({M-1\over 2})+\sum_{n=0}^{{M-1\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\Big)\\ &\underbrace{k={M-1\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=0}^{{M-1\over 2}}2h({M-1\over 2}-k)\cos[wk]\Big)e^{-jw{M-1\over 2}}\\ &\underbrace{a(n)=2h({M-1\over 2}-n),n=[1,\cdots,{M-1\over 2}],a(0)=h({M-1\over 2})}_{substitution} \\ &=\Big(\sum_{n=0}^{{M-1\over 2}}a(n)\cos[wn]\Big)e^{-jw{M-1\over 2}}\\ \end{aligned} H(ejw)=n=0M1h(n)ejwnsubstitution h(n)=h(M1n)=h(2M1)ejw2M1+n=02M11h(n)(ejwn+ejw(M1n))=h(2M1)ejw2M1+ejw2M1n=02M112h(n)cos[w(2M1n)]=ejw2M1(h(2M1)+n=02M112h(n)cos[w(2M1n)])substitution k=2M1n=(k=02M12h(2M1k)cos[wk])ejw2M1substitution a(n)=2h(2M1n),n=[1,,2M1],a(0)=h(2M1)=(n=02M1a(n)cos[wn])ejw2M1
由此可知:Type-1滤波器的振幅相应为 H r ( w ) = ∑ n = 0 M − 1 2 a ( n ) cos ⁡ [ w n ] H_r(w)=\sum_{n=0}^{{M-1\over 2}}a(n)\cos[wn] Hr(w)=n=02M1a(n)cos[wn],相位为 ∠ H ( e j w ) = − M − 1 2 w \angle H(e^{jw})=-{M-1\over 2}w H(ejw)=2M1w,其中 − M − 1 2 -{M-1\over 2} 2M1为滤波器的群延迟。

Type-2推导

滤波器阶数M为偶数, h ( n ) = h ( M − 1 − n ) , 0 ≤ n ≤ M − 1 h(n)=h(M-1-n), 0\leq n \leq M-1 h(n)=h(M1n),0nM1
频响推导如下:
H ( e j w ) = ∑ n = 0 M − 1 h ( n ) e − j w n h ( n ) = h ( M − 1 − n ) ⏟ s u b s t i t u t i o n = ∑ n = 0 M 2 − 1 h ( n ) ( e − j w n + e − j w ( M − 1 − n ) ) = e − j w M − 1 2 ∑ n = 0 M 2 − 1 2 h ( n ) cos ⁡ [ w ( M − 1 2 − n ) ] k = M 2 − n ⏟ s u b s t i t u t i o n = ( ∑ k = 1 M 2 2 h ( M 2 − k ) cos ⁡ [ w ( k − 1 2 ) ] ) e − j w M − 1 2 b ( n ) = 2 h ( M 2 − n ) , n = [ 1 , ⋯   , M 2 ] ⏟ s u b s t i t u t i o n = ( ∑ n = 1 M 2 b ( n ) cos ⁡ [ w ( n − 1 2 ) ] ) e − j w M − 1 2 \begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M\over 2}-1}h(n)(e^{-jwn}+e^{-jw(M-1-n)})\\ &=e^{-jw{M-1\over 2}}\sum_{n=0}^{{M\over 2}-1}2h(n)\cos[w({M-1\over 2}-n)]\\ &\underbrace{k={M\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=1}^{{M\over 2}}2h({M\over 2}-k)\cos[w(k-{1\over 2})]\Big)e^{-jw{M-1\over 2}}\\ &\underbrace{b(n)=2h({M\over 2}-n),n=[1,\cdots,{M\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M\over 2}}b(n)\cos[w(n-{1\over 2})]\Big)e^{-jw{M-1\over 2}}\\ \end{aligned} H(ejw)=n=0M1h(n)ejwnsubstitution h(n)=h(M1n)=n=02M1h(n)(ejwn+ejw(M1n))=ejw2M1n=02M12h(n)cos[w(2M1n)]substitution k=2Mn=(k=12M2h(2Mk)cos[w(k21)])ejw2M1substitution b(n)=2h(2Mn),n=[1,,2M]=(n=12Mb(n)cos[w(n21)])ejw2M1
由此可知:Type-2滤波器的振幅相应为 H r ( w ) = ∑ n = 1 M 2 b ( n ) cos ⁡ [ w ( n − 1 2 ) ] H_r(w)=\sum_{n=1}^{{M\over 2}}b(n)\cos[w(n-{1\over 2})] Hr(w)=n=12Mb(n)cos[w(n21)],相位为 ∠ H ( e j w ) = − M − 1 2 w \angle H(e^{jw})=-{M-1\over 2}w H(ejw)=2M1w,其中 − M − 1 2 -{M-1\over 2} 2M1为滤波器的群延迟。
w = π , H r ( 0 ) = 0 w=\pi,H_r(0)=0 w=π,Hr(0)=0,导致高频信号无法通过适合高通和带阻。

Type-3推导

滤波器阶数M为奇数, h ( n ) = − h ( M − 1 − n ) , 0 ≤ n ≤ M − 1 , h ( M − 1 2 ) = 0 h(n)=-h(M-1-n), 0\leq n \leq M-1,h({M-1\over 2})=0 h(n)=h(M1n),0nM1,h(2M1)=0
频响推导如下:
H ( e j w ) = ∑ n = 0 M − 1 h ( n ) e − j w n h ( n ) = − h ( M − 1 − n ) ⏟ s u b s t i t u t i o n = ∑ n = 0 M − 1 2 − 1 h ( n ) ( e − j w n − e − j w ( M − 1 − n ) ) = j e − j w M − 1 2 ∑ n = 0 M − 1 2 − 1 2 h ( n ) sin ⁡ [ w ( M − 1 2 − n ) ] k = M − 1 2 − n ⏟ s u b s t i t u t i o n = ( ∑ k = 0 M − 1 2 h ( M − 1 2 − k ) sin ⁡ [ w k ] ) e − j ( π 2 − w M − 1 2 ) c ( n ) = 2 h ( M − 1 2 − n ) , n = [ 1 , ⋯   , M − 1 2 ] ⏟ s u b s t i t u t i o n = ( ∑ n = 1 M − 1 2 c ( n ) sin ⁡ [ w n ] ) e − j ( π 2 − w M − 1 2 ) \begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=-h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M-1\over 2}-1}h(n)(e^{-jwn}-e^{-jw(M-1-n)})\\ &=je^{-jw{M-1\over 2}}\sum_{n=0}^{{M-1\over 2}-1}2h(n)\sin[w({M-1\over 2}-n)]\\ &\underbrace{k={M-1\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=0}^{{M-1\over 2}}h({M-1\over 2}-k)\sin[wk]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ &\underbrace{c(n)=2h({M-1\over 2}-n),n=[1,\cdots,{M-1\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M-1\over 2}}c(n)\sin[wn]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ \end{aligned} H(ejw)=n=0M1h(n)ejwnsubstitution h(n)=h(M1n)=n=02M11h(n)(ejwnejw(M1n))=jejw2M1n=02M112h(n)sin[w(2M1n)]substitution k=2M1n=(k=02M1h(2M1k)sin[wk])ej(2πw2M1)substitution c(n)=2h(2M1n),n=[1,,2M1]=(n=12M1c(n)sin[wn])ej(2πw2M1)

由此可知:Type-3滤波器的振幅相应为 H r ( w ) = ∑ n = 1 M − 1 2 c ( n ) sin ⁡ [ w n ] H_r(w)=\sum_{n=1}^{{M-1\over 2}}c(n)\sin[wn] Hr(w)=n=12M1c(n)sin[wn],相位为 ∠ H ( e j w ) = π 2 − M − 1 2 w \angle H(e^{jw})={\pi\over 2}-{M-1\over 2}w H(ejw)=2π2M1w,其中 − M − 1 2 -{M-1\over 2} 2M1为滤波器的群延迟。

  • 相位响应:严格的线性相位,且附加 90° 固定相移​(由反对称性导致)。
  • 幅度响应:在 w = 0 , π , H r ( 0 ) = H r ( π ) = 0 w=0,\pi,H_r(0)=H_r(\pi)=0 w=0,π,Hr(0)=Hr(π)=0处强制增益为零。
    适合Hilbert变换器和微分器等需要正交相移或抑制直流/高频分量的场景。

Type-4推导

滤波器阶数M为偶数, h ( n ) = − h ( M − 1 − n ) , 0 ≤ n ≤ M − 1 h(n)=-h(M-1-n), 0\leq n \leq M-1 h(n)=h(M1n),0nM1
频响推导如下:
H ( e j w ) = ∑ n = 0 M − 1 h ( n ) e − j w n h ( n ) = − h ( M − 1 − n ) ⏟ s u b s t i t u t i o n = ∑ n = 0 M 2 − 1 h ( n ) ( e − j w n − e − j w ( M − 1 − n ) ) = j e − j w M − 1 2 ∑ n = 0 M 2 − 1 2 h ( n ) sin ⁡ [ w ( M − 1 2 − n ) ] k = M 2 − n ⏟ s u b s t i t u t i o n = ( ∑ k = 1 M 2 2 h ( M 2 − k ) sin ⁡ [ w ( k − 1 2 ) ] ) e − j ( π 2 − w M − 1 2 ) d ( n ) = 2 h ( M 2 − n ) , n = [ 1 , ⋯   , M 2 ] ⏟ s u b s t i t u t i o n = ( ∑ n = 1 M 2 d ( n ) sin ⁡ [ w ( n − 1 2 ) ] ) e − j ( π 2 − w M − 1 2 ) \begin{aligned} H(e^{jw})&=\sum_{n=0}^{M-1}h(n)e^{-jwn}\\ &\underbrace{h(n)=-h(M-1-n)}_{substitution} \\ &=\sum_{n=0}^{{M\over 2}-1}h(n)(e^{-jwn}-e^{-jw(M-1-n)})\\ &=je^{-jw{M-1\over 2}}\sum_{n=0}^{{M\over 2}-1}2h(n)\sin[w({M-1\over 2}-n)]\\ &\underbrace{k={M\over 2}-n}_{substitution} \\ &=\Big(\sum_{k=1}^{{M\over 2}}2h({M\over 2}-k)\sin[w(k-{1\over 2})]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ &\underbrace{d(n)=2h({M\over 2}-n),n=[1,\cdots,{M\over 2}]}_{substitution} \\ &=\Big(\sum_{n=1}^{{M\over 2}}d(n)\sin[w(n-{1\over 2})]\Big)e^{-j({\pi\over 2}-w{M-1\over 2})}\\ \end{aligned} H(ejw)=n=0M1h(n)ejwnsubstitution h(n)=h(M1n)=n=02M1h(n)(ejwnejw(M1n))=jejw2M1n=02M12h(n)sin[w(2M1n)]substitution k=2Mn=(k=12M2h(2Mk)sin[w(k21)])ej(2πw2M1)substitution d(n)=2h(2Mn),n=[1,,2M]=(n=12Md(n)sin[w(n21)])ej(2πw2M1)
由此可知:Type-4滤波器的振幅相应为 H r ( w ) = ∑ n = 1 M 2 d ( n ) sin ⁡ [ w ( n − 1 2 ) ] H_r(w)=\sum_{n=1}^{{M\over 2}}d(n)\sin[w(n-{1\over 2})] Hr(w)=n=12Md(n)sin[w(n21)],相位为 ∠ H ( e j w ) = π 2 − M − 1 2 w \angle H(e^{jw})={\pi\over 2}-{M-1\over 2}w H(ejw)=2π2M1w,其中 − M − 1 2 -{M-1\over 2} 2M1为滤波器的群延迟。

  • 相位响应: w = 0 , e j π / 2 = j w=0,e^{j\pi/2}=j w=0,ejπ/2=j,且附加 90° 固定相移​(由反对称性导致)。
  • 幅度响应:在 w = 0 , H r ( 0 ) = 0 w=0,H_r(0)=0 w=0,Hr(0)=0,DC处强制为零增益,但在Nyquist频率处非零。
    适合设计Hilbert变换器和微分器。

[1]: Digital Signal Processing Using MATLAB
[2]: https://www.jianshu.com/p/c46c67dafe40

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值