MNE学习笔记3

这篇博客详细介绍了如何利用独立成分分析(ICA)去除EEG数据中的ECG和EOG伪影。首先,通过观察发现ICA000对应EOG信号,ICA001对应ECG信号。通过`plot_components()`和`plot_overlay()`方法进行可视化验证。接着,设置`ica.exclude`属性排除相关组件,并应用`apply()`方法去除伪影。此外,还讨论了如何在没有特定通道的情况下使用`find_bads_eog()`和`find_bads_ecg()`函数来识别伪影。最后,针对未完全检测的心跳伪影,建议重新进行ICA分析以找到更多相关成分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ICA修复伪影

导入存在明显ECG、EOG伪影的数据

import os
import mne
from mne.preprocessing import (ICA, create_eog_epochs,create_ecg_epochs, corrmap)
raw_name = 'H:/PycharmProjects/untitled1/simple/sample_audvis_raw.fif'

raw = mne.io.read_raw_fif(raw_name)
raw.crop(0, 60).load_data() 

#可视化存在伪影的数据
regexp = r'(MEG [12][45][123]1|EEG 00.)'
artifact_picks = mne.pick_channels_regexp(raw.ch_names, regexp=regexp)
raw.plot(order=artifact_picks, n_channels=len(artifact_picks))

eog_evoked = create_eog_epochs(raw).average()
eog_evoked.apply_baseline(baseline=(None, -0.2))
eog_evoked.plot_joint()
ecg_evoked = create_ecg_epochs(raw).average()
ecg_evoked
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值