约束极值问题的最优性条件
约束级值问题
其中 gi(x)≥0 称为 不等式约束, hj(x)=0 称为 等式约束。
集合 S={x∣gi(x)≥0,i=1,⋯,m;hj(x)=0,j=1,⋯,l} 称为可行集或可行域。
可行方向与下降方向
下降方向
若 ∃δ>0 , ∀λ∈(0,δ) , f(x¯+λd)<f(x¯) ,则称 d 为
f(x) 在 x¯ 处的下降方向。若 f(x) 可微, ∇f(x¯)d<0 ,则 d 为
f(x) 在 x¯ 处的下降方向。可行方向
设 S⊂Rn , x¯∈clS , d≠0 ,若 ∃δ>0 , ∀λ∈(0,δ) , x¯+λd∈S ,则称 d 为
S 在 x¯ 处的可行方向。D={d∣d≠0,x∈clS,∃δ>0,∀λ∈(0,δ),x¯+λd∈S} 称为在 x¯ 处的可行方向锥。
不等式约束问题的一阶最优性条件
Fritz John条件
设 x¯∈S , I={i∣gi(x¯)=0} , f ,
gi(i∈I) 在 x¯ 处可微, gi(i∈I) 在 x¯ 处连续。
若 x¯ 是局部最优解,则存在不全为 0 的非负数w0,wi(i∈I) ,使得
w0∇f(x¯)−∑i∈Iwi∇gi(x¯)=0
x¯ 称为Fritz John点。Karush-Kuhn-Tucker(KKT)条件
设 x¯∈S , I={i∣gi(x¯)=0} , f ,
gi(i∈I) 在 x¯ 处可微, gi(i∈I) 在 x¯ 处连续, {∇gi(x¯)∣i∈I} 线性无关。
若 x¯ 是局部最优解,则存在非负数 wi(i∈I) ,使得
∇f(x¯)−∑i∈Iwi∇gi(x¯)=0
x¯ 称为KKT点。若 gi(i∉I) 在 x¯ 可微,则KKT条件等价
⎧⎩⎨∇f(x¯)−∑i∈Iwi∇gi(x¯)=0,wigi(x¯)=0,i=1,⋯,m,wi≥0,i=1,⋯,m.
wigi(x¯)=0 称为 互补松弛条件。
一般约束问题的一阶最优性条件
Fritz John条件
设 x¯∈S , I={i∣gi(x¯)=0} , f ,
gi(i∈I) 在 x¯ 处可微, gi(i∈I) 在 x¯ 处连续, hj(j=1,⋯,l) 在点 x¯ 连续可微。
若 x¯ 是局部最优解,则存在不全为 0 的非负数w0,wi(i∈I) 和 vj(j=1,⋯,l) ,使得
w0∇f(x¯)−∑i∈Iwi∇gi(x¯)−∑j=1lvj∇hj(x¯)=0
x¯ 称为Fritz John点。Karush-Kuhn-Tucker(KKT)条件
设 x¯∈S , I={i∣gi(x¯)=0} , f ,
gi(i∈I) 在 x¯ 处可微, gi(i∈I) 在 x¯ 处连续, hj(j=1,⋯,l) 在点 x¯ 连续可微, {∇gi(x¯),∇hj(x¯)∣i∈I,j=1,⋯,l} 线性无关。
若 x¯ 是局部最优解,则存在非负数 wi(i∈I) 和 vj(j=1,⋯,l) ,使得
∇f(x¯)−∑i∈Iwi∇gi(x¯)−∑j=1lvj∇hj(x¯)=0
x¯ 称为KKT点。若 gi(i∉I) 在 x¯ 可微,则KKT条件等价
⎧⎩⎨⎪⎪∇f(x¯)−∑i∈Iwi∇gi(x¯)−∑lj=1vj∇hj(x¯)=0,wigi(x¯)=0,i=1,⋯,m,wi≥0,i=1,⋯,m.
wigi(x¯)=0 称为 互补松弛条件。Lagrange函数
L(x,w,v)=f(x)−∑i=1mwigi(x)−∑j=1lvjhj(x)
若 x¯ 是局部最优解,则存在Lagrange乘子 w¯¯¯≥0 和 v¯ ,使得
∇xL(x¯,w¯¯¯,v¯)=0一般情形的一阶必要条件(KKT必要条件)可表示为
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∇xL(x,w,v)=0wigi(x)=0,gi(x)≥0,hj(x)=0,wi≥0,i=1,2,⋯,mi=1,2,⋯,mj=1,2,⋯,li=1,2,⋯,m凸规划的充分条件
f 是凸函数,
gi(i=1,⋯,m) 是凹函数, hj(j=1,⋯,l) 是线性函数,可行域为 S ,x¯∈S , I={i∣gi(x¯)=0} ,且在 x¯ 处KKT必要条件成立,则 x¯ 是全局最优解。
二阶条件
切锥
设非空集合 S∈Rn ,点 x¯∈clS ,
T={d∣∃x(k)∈S,x(k)→x及λk>0,d=limk→∞(x(k)−x¯)}
T 称为集合S 在点 x¯ 的切锥(tangent cone)或序列
化可行方向锥(sequential feasible cone)。设确定集合 S 的所有约束函数在
x∈S 处连续可微,则 D(x,S)⊆SFD(x,S) ,其中 D(x,S) 为 x 点的可行方向锥,SFD(x,S) 为 x 点的切锥。
定义S¯¯=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪x∣x∈Rngi(x)=0,gi(x)≥0,hi(x)=0,i∈I,wi¯¯¯¯>0i∈I,wi¯¯¯¯=0j=1,⋯,l⎫⎭⎬⎪⎪⎪⎪⎪⎪⎪⎪
设 S¯¯ 在点 x¯ 的切锥为 T 。
定义G¯¯¯=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪d∣d∈Rn∇gi(x¯)d=0,∇gi(x¯)d≥0,∇hi(x¯)d=0,i∈I,wi¯¯¯¯>0i∈I,wi¯¯¯¯=0j=1,⋯,l⎫⎭⎬⎪⎪⎪⎪⎪⎪⎪⎪
则 G¯¯¯⊇T¯¯¯ 。二阶必要条件
设 x¯ 是局部最优解, f ,
gi(i=1,⋯,m) 和 hj(j=1,⋯,l) 二次连续可微,并存在满足一般情形的一阶必要条件的乘子 w¯¯¯=(w1¯¯¯¯,⋯,wm¯¯¯¯¯) 和 v=(v1¯¯¯,⋯,vl¯¯¯) 。
设点 x¯ 的约束规格 G¯¯¯=T¯¯¯ 成立,则 ∀d∈G¯¯¯ ,有
dT∇2xL(x¯,w¯¯¯,v¯)d≥0
即 L 在点x¯ 关于 x 的Hesse矩阵∇2xL(x¯,w¯¯¯,v¯)=∇2f(x¯)−∑mi=1wi¯¯¯¯∇2gi(x¯)−∑lj=1vj¯¯¯∇2hj(x¯) 是在 G¯¯¯ 上半正定的。二阶充分条件
设 f ,
gi(i=1,⋯,m) 和 hj(j=1,⋯,l) 二次连续可微, x¯ 为可行点,存在满足一般情形的一阶必要条件的乘子 w¯¯¯=(w1¯¯¯¯,⋯,wm¯¯¯¯¯) 和 v=(v1¯¯¯,⋯,vl¯¯¯) ,且 ∀d∈G¯¯¯ ,有
dT∇2xL(x¯,w¯¯¯,v¯)d>0
则 x 是严格局部最优解。
考虑下列非线性规划问题(可行域如图中的弧
判断下列各点是否为局部最优解:
解:目标函数 f(x)=x1 及约束函数 g(x)=3(x1−3)2+x2 , h(x)=(x1−3)2+x22−10 的梯度分别为
Lagrange函数是 L(x,w,v)=x1−w[3(x1−3)2+x2]−v[(x1−3)2+x22−10]
(1)
x(1)
是可行点,两个约束均为起作用约束。
KKT条件为
方程组无解,故 x(1) 不是KKT点,不是局部最优解。
(2)
x(2)
是可行点,两个约束均为起作用约束。
KKT条件为
解得 w=319 , v=138 , x(2) 是KKT点,问题在 x(2) 满足一阶必要条件。
在此点Lagrange函数的Hesse矩阵
求集合 G¯¯¯ 中的元素,由于 w>0 ,
解方程组 {∇g(x(2))Td=0∇h(x(2))Td=0 ,其中 d=(d1,d2)T ,即
{6d1+d2=02d1−6d2=0 ,解得 d=(0,0)T 。
方向集 G={d∣d≠0,∇g(x(2))Td=0,∇h(x(2))Td=0}=∅ ,
故 x(2) 是局部最优解。
P239