算法
AlgoComp
这个作者很懒,什么都没留下…
展开
-
Maximal Information Coefficient 最大信息系数
在统计学中,最大信息系数用于衡量两个变量XX和YY的线性或非线性的强度。来自Berkeley的Terry Speed说它是“a correlation for the 21st century”。但也有人说“MIC的统计能力遭到了一些质疑,当零假设不成立时,MIC的统计就会受到影响。在有的数据集上不存在这个问题,但有的数据集上就存在这个问题。”原创 2016-03-08 12:45:13 · 8338 阅读 · 0 评论 -
神经网络权值量化
对神经网络的权值进行量化,使模型大小变小,运行速度变快,且准确率与原来相近。参考 https://www.tensorflow.org/performance/quantization什么是量化把网络权值从高精度转化成低精度(32位浮点数 float32 转化成 8位定点数 int8 或二值化为 1 bit),但模型准确率等指标与原来相近,模型大小变小,运行速度加快。为什么...原创 2018-03-16 00:32:18 · 8214 阅读 · 1 评论 -
神经网络模型压缩与加速
介绍神经网络(主要是CNN)模型压缩与加速的常见方法目标:模型运行速度尽可能快,大小尽可能小,准确率尽可能保持不变模型压缩改变网络结构使用特定结构如 ShuffleNet, MobileNet, Xception, SqueezeNetMobileNet把普通卷积操作分成两部分Depthwise Convolution计算量 DK⋅DK⋅M⋅D...原创 2018-03-08 00:11:53 · 5161 阅读 · 0 评论 -
RCNN, Fast RCNN, Faster RCNN
学习目标检测的三种方法:RCNN, Fast RCNN, Faster RCNN原创 2016-07-30 14:05:20 · 2167 阅读 · 1 评论 -
朴素贝叶斯文档分类实验
根据朴素贝叶斯(Naive Bayes)算法,对以下混在一起十个分类的文档集合进行分类。原创 2016-07-28 17:14:04 · 1355 阅读 · 0 评论 -
使用torch进行深度学习
使用torch进行深度学习。 参考 https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb原创 2016-05-29 12:24:00 · 2789 阅读 · 0 评论 -
torch学习
torch是一个基于LuaJIT的科学计算框架。 详情见 http://torch.ch/安装torch参考http://torch.ch/docs/getting-started.html 在terminal中输入以下命令即可:git clone https://github.com/torch/distro.git ~/torch --recursivecd ~/torch; bash i原创 2016-05-27 18:08:39 · 2960 阅读 · 0 评论 -
Non-negative Matrix Factorization 非负矩阵分解
Non-negative Matrix Factorization 非负矩阵分解原创 2015-08-13 16:34:11 · 6922 阅读 · 0 评论 -
K-Nearest Neighbor algorithm K最邻近结点算法
K-Nearest Neighbor algorithm K最邻近结点算法Introduction定义 在模式识别领域中,最近邻居法(k-Nearest Neighbors algorithm,KNN算法,又译K-近邻算法)是一种用于分类和回归的非参数统计方法。原创 2015-09-02 16:43:19 · 3156 阅读 · 0 评论 -
Canonical Correlation Analysis 典型相关分析
典型相关分析(Canonical Correlation Analysis)利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。原创 2015-10-02 01:05:46 · 2953 阅读 · 0 评论 -
Partial Least Squares Regression 偏最小二乘法回归
偏最小二乘回归 ≈ 多元线性回归分析 + 典型相关分析 + 主成分分析原创 2015-11-02 10:32:40 · 11887 阅读 · 1 评论 -
Metric learning 度量学习
距离测度学习的目的即为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。原创 2015-11-14 16:00:09 · 8080 阅读 · 3 评论 -
神经网络剪枝
对神经网络(主要是CNN)进行剪枝,使模型运行速度变快,大小变小,且准确率与原来相近。如何剪枝移除滤波器参考论文 1,对所有滤波器(filters)计算L1范数,移除值较小的滤波器。优点模型变小,运行速度变快。缺点依然保留部分冗余的连接。普通卷积输入的特征图:xi∈Rni×hi×wixi∈Rni×hi×wix_i \in \mathbb{R}^{...原创 2018-03-10 23:48:34 · 4796 阅读 · 0 评论