C#堆排序

堆排序

  堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

  

 

基本思想
1.将要排序的数组创建为一个大根堆。大根堆的堆顶元素就是这个堆中最大的元素。
2.将大根堆的堆顶元素和无序区最后一个元素交换,并将无序区最后一个位置例入有序区,然后将新的无序区调整为大根堆。
重复操作,无序区在递减,有序区在递增。
初始时,整个数组为无序区,第一次交换后无序区减一,有序区增一。
每一次交换,都是大根堆的堆顶元素插入有序区,所以有序区保持是有序的。

代码实现

 static void Main(string[] args)
        {
            point2(9);
            bool b = point1(9);
            Console.WriteLine(b);

            int[] p = new int[] { 4, 2, 5, 1, 7, 8, 9, 90, 999 };
            //堆排序
            point(p);
            foreach (var item in p)
            {
                Console.WriteLine(item);
            }
        }

public static void point(int[] p)
        {
            int num = p.Length;
            for (int i = num / 2; i >= 1; i--)
            {
                //构造大顶堆
                print(p, i, num);
            }
            while (num > 1)
            {
                Jiao(p, 0, num - 1);
                num--;
                print(p, 1, num);
            }

        }
        public static void point2(int a)
        {
            if (a % 2 == 0)
            {
                Console.WriteLine(false);
            }
            else { Console.WriteLine(true); }
        }


        public static bool point1(int a)
        {
            return (a & 1) == 1;//如果尾数为1 就是奇数
        }

        public static void print(int[] p, int i, int num)
        {
            if (2 * i > num)
            {
                return;
            }
            if (2 * i == num)
            {
                if (p[2 * i - 1] > p[i - 1])
                {
                    //交换
                    Jiao(p, 2 * i - 1, i - 1);
                }
                return;
            }
            if (p[2 * i - 1] > p[i - 1] && p[2 * i - 1] >= p[2 * i])
            {
                Jiao(p, 2 * i - 1, i - 1);
                print(p, 2 * i, num);
            }
            if (p[2 * i] > p[i - 1] && p[2 * i] > p[2 * i - 1])
            {
                Jiao(p, 2 * i, i - 1);
                print(p, 2 * i + 1, num);
            }
        }
        public static void Jiao(int[] p, int a, int b)
        {
            int tmp = p[a];

            p[a] = p[b];
            p[b] = tmp;
        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值