堆排序
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
基本思想
1.将要排序的数组创建为一个大根堆。大根堆的堆顶元素就是这个堆中最大的元素。
2.将大根堆的堆顶元素和无序区最后一个元素交换,并将无序区最后一个位置例入有序区,然后将新的无序区调整为大根堆。
重复操作,无序区在递减,有序区在递增。
初始时,整个数组为无序区,第一次交换后无序区减一,有序区增一。
每一次交换,都是大根堆的堆顶元素插入有序区,所以有序区保持是有序的。
代码实现
static void Main(string[] args)
{
point2(9);
bool b = point1(9);
Console.WriteLine(b);
int[] p = new int[] { 4, 2, 5, 1, 7, 8, 9, 90, 999 };
//堆排序
point(p);
foreach (var item in p)
{
Console.WriteLine(item);
}
}
public static void point(int[] p)
{
int num = p.Length;
for (int i = num / 2; i >= 1; i--)
{
//构造大顶堆
print(p, i, num);
}
while (num > 1)
{
Jiao(p, 0, num - 1);
num--;
print(p, 1, num);
}
}
public static void point2(int a)
{
if (a % 2 == 0)
{
Console.WriteLine(false);
}
else { Console.WriteLine(true); }
}
public static bool point1(int a)
{
return (a & 1) == 1;//如果尾数为1 就是奇数
}
public static void print(int[] p, int i, int num)
{
if (2 * i > num)
{
return;
}
if (2 * i == num)
{
if (p[2 * i - 1] > p[i - 1])
{
//交换
Jiao(p, 2 * i - 1, i - 1);
}
return;
}
if (p[2 * i - 1] > p[i - 1] && p[2 * i - 1] >= p[2 * i])
{
Jiao(p, 2 * i - 1, i - 1);
print(p, 2 * i, num);
}
if (p[2 * i] > p[i - 1] && p[2 * i] > p[2 * i - 1])
{
Jiao(p, 2 * i, i - 1);
print(p, 2 * i + 1, num);
}
}
public static void Jiao(int[] p, int a, int b)
{
int tmp = p[a];
p[a] = p[b];
p[b] = tmp;
}