hdu 1150Machine Schedule(最小顶点覆盖)

首先必须知道König定理: 

最大匹配值 = 最小顶点覆盖。


该定理的证明(转自):http://www.matrix67.com/blog/archives/116

二分图最大匹配的König定理及其证明

    本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。
    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案:
    1. 什么是二分图;
    2. 什么是二分图的匹配;
    3. 什么是匈牙利算法;(http://www.matrix67.com/blog/article.asp?id=41)
    4. König定理证到了有什么用;
    5. 为什么o上面有两个点。

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在这里写一下这个定理的证明,希望对大家有所帮助。



    假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
    匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
    首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)。因此,最后我们圈起来的点与匹配边一一对应。
    其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
    最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。
    证完了。


题意: 有两种机器A、B   ,k个工作,每个工作可在A上的ai模式运行,也可以在B上的bi上运行,但是每次转换模式需要重新开机,要求安排最合适的工作顺序来求出最小的开机次数。

思路: 将每个工作看做连接A、B两个集合的边,求最少的点(A、B的模式数)可以满足所有的工作(覆盖所有边),即求最小顶点覆盖(最大匹配数)。

代码:(用邻接表实现)

#include<iostream>
#include<string.h>
using namespace std;
const int NV=1500;
const int EV=10001;
int head[NV],pp[NV],vis[NV];
int N,size;
typedef struct
{
    int v,next;
}Edge;
Edge E[EV];
void init(int VX)
{
     N=VX;  size = 0;
    for(int i=0;i<=N;i++) 
     head[i]=-1; //head[]若为-1则该顶点没有与之相连的顶点了 
}
void insert(int a , int b)
{
     E[size].v = b; E[size].next = head[a];
     head[a] = size++;//head[]存该顶点最后一条边的序号 
}
int find_path(int u)
{//cout<<"u=  "<<u<<endl;
     for(int i=head[u];i!=-1 ; i=E[i].next)
     {//cout<<"i= "<<E[i].v<<endl;
           int v=E[i].v;//cout<<"***** "<<vis[v]<<endl;
           if(vis[v]) continue;
           vis[v]=1;
           if(pp[v]==-1 || find_path(pp[v]))
           {//cout<<"u -- v : "<<u<<"  "<<v<<endl;
                pp[u]=v;  pp[v]=u;
                return 1;
           }
     }
     return 0;
}
int find_Ans(int n)
{
    int match=0;
    memset(pp,-1,sizeof(pp));  //pp[u]=v表示A机器u模式可以和B机器v模式匹配 
    for(int i=1;i<=n;i++)
    {//cout<<"*** "<<i<<endl;
         if(pp[i]==-1)  //若i顶点还未匹配 
         {
              memset(vis,0,sizeof(vis));
              match+=find_path(i); //cout<<"match= "<<match<<endl;
         }
    }
    return match;
}

int main()
{
    int n,m,k;
    int c,a , b;
    while(scanf("%d",&n)!=EOF && n)
    {
         scanf("%d%d",&m,&k);
         init(n+m);
         for(int i=1;i<=k;i++)
         {
             scanf("%d%d%d",&c,&a,&b);
             if(a==0 || b==0) continue;
             insert(a,b+n);  
             insert(b+n,a); //将顶点a、b的边加入E[]中 
         }
         memset(pp,-1,sizeof(pp));
         printf("%d\n",find_Ans(n));
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值