题目
题意
给两个数组 {ai}, {bi}, 现在要将扩展数组 {ai} 从 an+1 到 a2n,对于每个新增的 ai : 必须从 {bi} 中选出一个 bk, ai 需要满足 ai ≤ max{aj - j│bk ≤ j < i}, bk 只能被选择一次。
你需要找出
max{
∑2nn+1ai
∑
n
+
1
2
n
a
i
} modulo 109+7。
题解
优先队列,签到题。
根据条件,将每个 ai 的值更新为 max {aj - j | i ≤ j < n},然后根据{bi}的值,将他们扔进优先队列。
最后逐个取出更新 an+1 到 a2n 的值。
需要注意的是,在更新 an+2 到 a2n 值得时候,需要取的值是max{ (an+1 - (n+1)) , q.top()}。(an+1 - (n+1)) 可能大于优先队列中的值,但此后的{aj - j | n+2 ≤ j < n} 一定比 (an+1 - (n+1)) 的值小。
代码
#include <algorithm>
#include <bitset>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <climits>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
const int N = 250005;
const long long mod = 1000000007;
int a[N];
int b[N];
int main(){
int n;
while( cin >> n ){
for (int i = 1; i <= n; ++i) {
scanf("%d",&a[i]);
}
for (int i = 1; i <= n; ++i) {
scanf("%d",&b[i]);
}
int mx = 0;
for(int i = n; i >= 1; --i) {
mx = max(a[i] - i,mx);
a[i] = mx;
}
priority_queue<long long>q;
for(int i=1;i<=n;i++) {
q.push((long long)a[b[i]]);
}
long long sum = q.top();
q.pop();
long long lmx = sum - (n+1);
while(!q.empty()){
sum = (sum + max(q.top(),lmx)) % mod;
q.pop();
}
cout << sum << endl;
}
return 0;
}