HDU-6047 优先队列

题目

Maximum Sequence

题意

给两个数组 {ai}, {bi}, 现在要将扩展数组 {ai} 从 an+1 到 a2n,对于每个新增的 ai : 必须从 {bi} 中选出一个 bk, ai 需要满足 ai ≤ max{aj - j│bk ≤ j < i}, bk 只能被选择一次。
你需要找出
max{ 2nn+1ai ∑ n + 1 2 n a i } modulo 109+7。

题解

优先队列,签到题。
根据条件,将每个 ai 的值更新为 max {aj - j | i ≤ j < n},然后根据{bi}的值,将他们扔进优先队列。
最后逐个取出更新 an+1 到 a2n 的值。
需要注意的是,在更新 an+2 到 a2n 值得时候,需要取的值是max{ (an+1 - (n+1)) , q.top()}。(an+1 - (n+1)) 可能大于优先队列中的值,但此后的{aj - j | n+2 ≤ j < n} 一定比 (an+1 - (n+1)) 的值小。

代码

#include <algorithm>
#include <bitset>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <climits>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
const int N = 250005;
const long long mod = 1000000007;
int a[N];
int b[N];
int main(){
    int n;
    while( cin >> n ){
        for (int i = 1; i <= n; ++i) {
            scanf("%d",&a[i]);
        }
        for (int i = 1; i <= n; ++i) {
            scanf("%d",&b[i]);
        }
        int mx = 0;
        for(int i = n; i >= 1; --i) {
            mx = max(a[i] - i,mx);
            a[i] = mx;
        }
        priority_queue<long long>q;
        for(int i=1;i<=n;i++) {
            q.push((long long)a[b[i]]);
        }
        long long sum = q.top();
        q.pop();
        long long lmx = sum - (n+1);
        while(!q.empty()){
            sum = (sum + max(q.top(),lmx)) % mod;
            q.pop();
        }

        cout << sum << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值