图像中的高频分量和低频分量

转载自:http://blog.sina.com.cn/s/blog_8da31aa3010142x8.html

形象一点说:亮度或灰度变化激烈的地方对应高频成分,如边缘;变化不大的地方对于低频成分,如大片色块区

画个直方图,大块区域是低频,小块或离散的是高频
 
把图像看成二维函数,变化剧烈的地方就对应高频,反之低频。
举个通俗易懂的例子:
一幅图象,你戴上眼镜,盯紧了一个地方看到的是高频分量
摘掉眼镜,眯起眼睛,模模糊糊看到的就是低频分量。  
图像的高低频是对图像各个位置之间强度变化的一种度量方法.
低频分量:主要对整副图像的强度的综合度量.
高频分量:主要是对图像边缘和轮廓的度量.
如果一副图像的各个位置的强度大小相等,则图像只存在低频分量,从图像的频谱图上看,只有一个主峰,且位于频率为零的位置.

如果一副图像的各个位置的强度变化剧烈,则图像不仅存在低频分量,同时也存在多种高频分量,从图像的频谱上看,不仅有一个主峰,同时也存在多个旁峰.


以上的现象可以通过对傅里叶变换的公式分析得出.
以下所说的积分是对x进行的.

exp(-jwx)的数值变化是均匀的,如果对exp(-jwx)进行积分,则积分值为零.

如果对exp(-jwx)乘以一个加权函数f(x),则在对f(x)exp(-jwx)进行积分,积分值不一定为零.

如果exp(-jwx)的取值为1(w=0,直流分量)时,则对f(x)exp(-jwx)积分,既为对f(x)积分,此时f(x)exp(-jwx)最大,既频谱中的主峰.

如果f(x) 是常数(大片色块区)则, 除w=0处f(x)exp(-jwx)的积分不为零外,在w不为零的其它处,f(x)exp(-jwx)的积分都为零.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值