机器视觉作业--分离图片的频谱并叠加

该代码示例展示了如何使用OpenCV库对两张图片进行处理,分别提取低频(通过高斯滤波)和高频(通过拉普拉斯滤波)信息,然后将两者叠加生成新的图像。最终结果是将一张图片的低频部分与另一张图片的高频部分结合在一起,保存并显示结果。
摘要由CSDN通过智能技术生成

将一张照片的低频和另一种照片的高频叠加成一张新的图片。

注意:两张图片要格式一致,大小一致。

代码:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

void displayMagnitudeSpectrum(const Mat& complexImage) {
    Mat magnitude;
    magnitude = Mat(complexImage.size(), CV_32F);

    // 计算频谱幅度
    magnitude = Mat::zeros(complexImage.size(), CV_32F);
    for (int i = 0; i < complexImage.rows; i++) {
        for (int j = 0; j < complexImage.cols; j++) {
            magnitude.at<float>(i, j) = sqrt(pow(complexImage.at<Vec2f>(i, j)[0], 2) + pow(complexImage.at<Vec2f>(i, j)[1], 2));
        }
    }

    // 对数变换,增强显示效果
    magnitude += Scalar::all(1);
    log(magnitude, magnitude);
    normalize(magnitude, magnitude, 0, 1, NORM_MINMAX);

    // 将频谱图像转换为灰度图像
    Mat magnitudeImage;
    magnitude.convertTo(magnitudeImage, CV_8UC1, 255);

    // 显示频谱图像
    imshow("Magnitude Spectrum", magnitudeImage);
}

int main()
{
    // 读取两张图片
    Mat image1 = imread("D:/C++/jcw_2.png", IMREAD_GRAYSCALE);
    Mat image2 = imread("D:/C++/pyy_2.png", IMREAD_GRAYSCALE);

    if (image1.empty() || image2.empty()) {
        cout << "Error: Could not load images." << endl;
        return -1;
    }
    // 创建高斯滤波器以提取低频信息
    Mat lowPassImage;
    GaussianBlur(image1, lowPassImage, Size(15, 15), 0);

    // 创建拉普拉斯滤波器以提取高频信息
    Mat highPassImage;
    Laplacian(image2, highPassImage, CV_16S, 3);
    convertScaleAbs(highPassImage, highPassImage);

    // 结合低频和高频信息
    Mat combinedImage = lowPassImage + highPassImage;

    // 保存结果图片
    imwrite("combined_image.png", combinedImage);

    // 显示结果
    imshow("Low Pass Image", lowPassImage);
    imshow("High Pass Image", highPassImage);
    imshow("Combined Image", combinedImage);
    waitKey(0);

    return 0;
}

效果:不太理想,因为彭于晏不是正脸。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值