机器学习教程 之 半监督学习 Co-training 协同训练 (论文、算法、数据集、代码)

这篇博客介绍的是一篇用于半监督分类问题的方法: 协同训练 Co-training, A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in Proc. of the 11th Annual Conf. on Computational Learning Theory, 1998.,这算是半监督领域里面始祖级的论文了,是1998年两位CMU大佬提出的方法。

关于半监督学习

  1. 基于分歧的半监督学习方法
    机器学习教程 之 半监督学习 Tri-training方法 (论文、数据集、代码)
    机器学习教程 之 半监督学习 Co-training 协同训练 (论文、算法、数据集、代码)
    机器学习教程 之 半监督学习 Coreg 协同回归算法 (论文、算法、数据集、代码)
  2. 基于图的半监督学习方法
    DeepLearning | 图注意力网络Graph Attention Network(GAT)论文、模型、代码解析
    DeepLearning | 图卷积神经网络(GCN)解析(论文、算法、代码)
    DeepLearning | 图卷积网络基于拓扑结构的分类(T-GCN)
    机器学习教程 之 半监督学习 基于图正则项的半监督极限学习机

这些博客都提供了算法的讲解和python的代码复现,感兴趣的可以了解一下

一、协同训练 Co-training

协同训练是一类基于“分歧”的半监督学习方法,它最初是针对“多视图”数据设计的。为了更好的介绍协同训练,我们这里先介绍什么是多视图数据。

在不少现实应用中,一个数据对象往往同时拥有有多个“属性集”,每个属性集就构成了一个视图。例如,对于一部电影而言,它拥有多个属性集,即图像画面对应的属性集、声音信息对应的属性集、字幕信息对应的属性集、甚至网上的宣传所讨论对应的属性集等。每个属性集都可以看作为一个视图。为简化讨论,这里仅考虑图像画面属性集所构成的视图和声音属性集所构成的视图。于是,一个电影片段可以表示为 ( < x 1 , x 2 > , y ) (<x^{1},x^{2}>,y) (<x1,x2>

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Liangjun_Feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值