顺序表应用4-2:元素位置互换之逆置算法(数据改进)
Time Limit: 80MS Memory Limit: 600KB
Problem Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:交换操作会有多次,每次交换都是在上次交换完成后的顺序表中进行。
Input
第一行输入整数len(1<=len<=1000000),表示顺序表元素的总数;
第二行输入len个整数,作为表里依次存放的数据元素;
第三行输入整数t(1<=t<=30),表示之后要完成t次交换,每次均是在上次交换完成后的顺序表基础上实现新的交换;
之后t行,每行输入一个整数m(1<=m<=len),代表本次交换要以上次交换完成后的顺序表为基础,实现前m个元素与后len-m个元素的交换;
Output
输出一共t行,每行依次输出本次交换完成后顺序表里所有元素。
Example Input
10 1 2 3 4 5 6 7 8 9 -1 3 2 3 5
Example Output
3 4 5 6 7 8 9 -1 1 2 6 7 8 9 -1 1 2 3 4 5 1 2 3 4 5 6 7 8 9 -1
#include <stdio.h>
typedef struct node
{
int len;
int *elem;
}sl;
void creat(sl &l, int n)
{
int i;
l.len = n;
l.elem = new int[1001000];
for(i=0;i<l.len;i++)
{
scanf("%d",&l.elem[i]);
}
}
void movel(sl &ll, int l, int r)
{
int p;
while(l<r)
{
p = ll.elem[l];
ll.elem[l] = ll.elem[r];
ll.elem[r] = p;
l++;r--;
}
}
void dis(sl &l)
{
int i;
for(i=0;i<l.len;i++)
{
printf("%d%c",l.elem[i],i==l.len-1?'\n':' ');
}
}
int main()
{
int n, m, t;
sl l;
scanf("%d",&n);
creat(l, n);
scanf("%d",&t);
while(t--)
{
scanf("%d",&m);
movel(l,0,n-1);
movel(l,0,n-m-1);
movel(l,n-m,n-1);
dis(l);
}
return 0;
}