隐私计算-联邦学习,多方安全计算,可信计算的区别与联系

联邦学习,多方安全计算,可信计算作为隐私计算三类技术是有各自的特点和差别,核心思想不同,应用侧重方向、数据流动方式、硬件要求等方面有差异,各有自行的演进路径。

1、联邦学习(软件级):

核心思想:面向模型,"数据不动、模型动",原始数据在本地模型训练,只交互模型的中间计算结果。

应用方向:侧重于多方数据的分布式机器学习模型训练和推理。

数据流动:不交换原始数据

密码技术:密分享、同态加密、差分隐私等

硬件要求:通用硬件

2、多方安全计算(软件级):

核心思想:面向数据,信任密码学,构建一系列基础运算操作后,实现多方原始数据转换为密文后流动和协同计算。

应用方向:侧重于多方数据的通用安全数据联合计算分析

数据流动:原始数据加密后交换

密码技术:秘密分享、同态加密、混淆电路、不经意传输、同态承诺、零知识证明、PSI、PIR、差分隐私等

硬件要求:通用硬件

3、可信计算(硬件级):

核心思想:面向数据,信任硬件,通过特殊的硬件提供安全的执行环境,原始数据加密后在"可信环境"中执行。

应用方向:侧重于多方数据的通用安全数据联合计算分析

数据流动:原始数据加密后交换

密码技术:非对称加密算法

硬件要求:指定型号硬件

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
安全多方计算(Secure Multi-Party Computation,简称SMPC)和联邦学习(Federated Learning)都是隐私保护的机器学习方法,它们可以结合起来进一步提高隐私保护的效果。 SMPC是一种保证参与方隐私的计算方法,它允许多方协作完成计算任务,但不会暴露各方的输入数据。SMPC的实现方式包括基于加密算法的方法、基于秘密共享的方法等。在机器学习中,SMPC可以用于保护模型训练过程中的隐私数据,比如在训练神经网络时,各方可以共同参与计算,但不会直接共享数据。 联邦学习是一种分布式机器学习方法,它允许多个设备或数据中心在不共享原始数据的情况下训练模型。在联邦学习过程中,每个参与方将本地的模型更新上传到中央服务器,然后中央服务器将这些更新整合起来得到新的全局模型,并将更新后的全局模型下发给各个参与方。联邦学习的优点是可以避免数据共享带来的隐私风险,同时也可以利用分布式计算的优势提高效率。 将SMPC和联邦学习相结合,可以在保护隐私的前提下,更好地利用分布式计算资源,提高模型训练的效率和准确度。具体来说,可以采用联邦学习的方式进行模型训练,而在模型训练过程中使用SMPC来保护各方的隐私数据。这样既能确保各方数据的隐私性,又能充分利用各方的计算资源,提高模型训练的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值