利用python-sknetwork进行图聚类/社区发现

社区发现是基于图结构的非常经典的聚类算法,与传统聚类算法:kmeans/dbscan等不同,前者能将离散数据进行团伙聚类,从而解决传统聚类方式基于连续值距离度量的缺点。

社区发现综述:

马东什么:社区发现算法综述120 赞同 · 13 评论文章

代码如下:

from IPython.display import SVG

import numpy as np
from scipy import sparse
import pandas as pd

from sknetwork.utils import edgelist2adjacency, edgelist2biadjacency
from sknetwork.data import convert_edge_list, load_edge_list, load_graphml
from sknetwork.visualization import svg_graph, svg_digraph, svg_bigraph
# 将df数据转换成sknetwork数据格式:
# edge_list = [("Alice", "Bob", 3), ("Bob", "Carey", 2), ("Alice", "David", 1), ("Carey", "David", 2), ("Bob", "David", 3)]
# 例如("Alice", "Bob", 3)代表"Alice" 访问"Bob" 访问了3次
edge_list = list(df.itertuples(index=False))
# 转换成图数据格式
graph = convert_edge_list(edge_list)
# 查看结果
adjacency = graph.adjacency
names = graph.names
#社区发现
from sknetwork.clustering import Louvain
algo = Louvain()
algo.fit(adjacency)
labels = algo.labels_
# 展示图
image = svg_graph(adjacency, names=names,width=2000,height=600,display_edge_weight=True)
SVG(image)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值