数学学习笔记 代数变形 第一章 活用常数

如果有发现我侵犯版权,请邮箱联系334806478@qq.com,我随时在

初等数学中,最常用的两个常数就是 0 0 0 1 1 1了。(信息竞赛生&程序员:!!!)。

比如常数 1 1 1就珂以这样替换:
1 = s i n 2 α + c o s 2 α = t a n ( π 4 + k π ) = s i n ( π 2 + 2 k π ) = c o s ( 2 k π ) ( k ∈ Z ) = a b ∗ b a = a a ( a b ! = 0 ) = log ⁡ a b ∗ log ⁡ b a = l o g a a ( a , b > 0 , a , b ! = 1 ) = a 0 ( a ! = 0 ) = i 4 k ( k ∈ Z , i = − 1 ) = 1 k 1\\ =sin^2\alpha+cos^2\alpha\\ =tan(\frac{\pi}{4}+k\pi)=sin(\frac{\pi}{2}+2k\pi)=cos(2k\pi)(k\in \Z)\\ =\frac{a}{b}*\frac{b}{a}=\frac{a}{a}(ab!=0)\\ =\log_ab*\log_ba=log_aa(a,b>0,a,b!=1)\\ =a^0(a!=0)\\ =i^{4k}(k\in \Z,i=\sqrt{-1})\\ =1^k 1=sin2α+cos2α=tan(4π+kπ)=sin(2π+2kπ)=cos(2kπ)(kZ)=baab=aa(ab!=0)=logablogba=logaa(a,b>0,a,b!=1)=a0(a!=0)=i4k(kZ,i=1 )=1k

那么,来看几个题⑧

  1. 已知 a , b , c ∈ R + ( 即 a , b , c 为 正 实 数 ) a,b,c\in\R^{+}(即a,b,c为正实数) a,b,cR+a,b,c, a b + b c + a c > = 3 ab+bc+ac>=3 ab+bc+ac>=3,求证: ( a 3 + b 3 + c 3 ) ( a 2 + b 2 + c 2 ) > = 9 (a^3+b^3+c^3)(a^2+b^2+c^2)>=9 (a3+b3+c3)(a2+b2+c2)>=9
    解:
    首先我们知道 a 2 + b 2 + c 2 − a b + b c + a c = ( a − b ) 2 + ( b − c ) 2 + ( c − a ) 2 2 > = 0 a^2+b^2+c^2-ab+bc+ac=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}>=0 a2+b2+c2ab+bc+ac=2(ab)2+(bc)2+(ca)2>=0(初中学的),那么 a 2 + b 2 + c 2 − a b − b c − a c > = 0 a^2+b^2+c^2-ab-bc-ac>=0 a2+b2+c2abbcac>=0,即 a 2 + b 2 + c 2 > = a b + b c + a c = 3 a^2+b^2+c^2>=ab+bc+ac=3 a2+b2+c2>=ab+bc+ac=3
    此时我们证出来后一个括号是 > = 3 >=3 >=3了。要证原式 > = 9 >=9 >=9,还缺一步:证明前一个括号 ( a 3 + b 3 + c 3 ) > = 3 (a^3+b^3+c^3)>=3 (a3+b3+c3)>=3
    我们知道(如果你不知道,那么很正常,我就是因为不知道幂平均不等式导致做不出来这个题的。。。)
    幂平均不等式:一个数列 a 1 , a 2 . . . a n a_1,a_2...a_n a1,a2...an满足:若 x &lt; y x&lt;y x<y,则

∑ i = 1 n a i x n x &lt; = ∑ i = 1 n a i y n y \sqrt[x]{\sum\limits_{i=1}^{n}\frac{a_i^x}{n}}&lt;=\sqrt[y]{\sum\limits_{i=1}^{n}\frac{a_i^y}{n}} xi=1nnaix <=yi=1nnaiy

(注意:根号外面分别是 x x x次根, y y y次根。)
根据这个幂平均不等式,我们珂以将一些数的几次方和的不等关系联系起来。
比如我们知道 a 2 + b 2 + c 2 &gt; = 3 a^2+b^2+c^2&gt;=3 a2+b2+c2>=3,根据幂平均不等式,
a 2 + b 2 + c 2 3 &lt; = a 3 + b 3 + c 3 3 3 ( 模 板 ) ( a 2 + b 2 + c 2 ) 3 3 3 &lt; = ( a 3 + b 3 + c 3 ) 2 3 2 ( 同 时 六 次 方 ) ( a 3 + b 3 + c 3 ) 2 &gt; = ( a 2 + b 2 + c 3 ) 3 3 &gt; = 3 3 3 &gt; = 9 ( 同 时 乘 9 ) ( a 3 + b 3 + c 3 ) &gt; = 3 ( a , b , c ∈ R + ) \sqrt{\frac{a^2+b^2+c^2}{3}}&lt;=\sqrt[3]{\frac{a^3+b^3+c^3}{3}}(模板)\\ \frac{(a^2+b^2+c^2)^3}{3^3}&lt;=\frac{(a^3+b^3+c^3)^2}{3^2}(同时六次方)\\ (a^3+b^3+c^3)^2&gt;=\frac{(a^2+b^2+c^3)^3}{3}&gt;=\frac{3^3}{3}&gt;=9(同时乘9)\\ (a^3+b^3+c^3)&gt;=3(a,b,c\in \R^+) 3a2+b2+c2 <=33a3+b3+c3 33(a2+b2+c2)3<=32(a3+b3+c3)2(a3+b3+c3)2>=3(a2+b2+c3)3>=333>=99(a3+b3+c3)>=3a,b,cR+
此时,即珂证明: ( a 2 + b 2 + c 2 ) ( a 3 + b 3 + c 3 ) &gt; = 9 (a^2+b^2+c^2)(a^3+b^3+c^3)&gt;=9 (a2+b2+c2)(a3+b3+c3)>=9

  1. 已知 n , m ∈ Z n,m\in \Z n,mZ,且 1 &lt; m &lt; n 1&lt;m&lt;n 1<m<n,求证 ( 1 + n ) m &lt; ( 1 + m ) n (1+n)^m&lt;(1+m)^n (1+n)m<(1+m)n
    解:
    等式右边时 n n n项相乘的结果,左边是 m m m项相乘的结果。
    我们都知道,几个数在项数相等,且和一定的时候,肯定是越平均,和越大。
    左边的项数小于右边。如何配相等呢?
    左边是 m m m项, 补 上 n − m 个 1 \color{#ff0000}{补上n-m个1} nm1,左右项就一样了
    (这个题最巧妙的地方在此)
    补完之后,发现:左边项的和是: ( 1 + n ) ∗ m + ( n − m ) ∗ 1 = m n + n (1+n)*m+(n-m)*1=mn+n (1+n)m+(nm)1=mn+n
    右边项的和是: ( 1 + m ) ∗ n = m n + n (1+m)*n=mn+n (1+m)n=mn+n
    和相等,但是很明显,右边都是一样的,但是左边有的是 ( 1 + n ) (1+n) (1+n),有的是 1 1 1,明显不平均。
    所以右边 &gt; &gt; >左边,即 ( 1 + m ) n &gt; ( 1 + n ) m (1+m)^n&gt;(1+n)^m (1+m)n>(1+n)m。证毕。

  2. S n = ∑ i = 1 n 1 i S_n=\sum\limits_{i=1}^{n}\frac{1}{i} Sn=i=1ni1,求证: n ( n + 1 ) 1 n − n &lt; S n &lt; n − ( n − 1 ) n − 1 n − 1 ( n &gt; 2 ) n(n+1)^{\frac{1}{n}}-n&lt;S_n&lt;n-(n-1)n^{-\frac{1}{n-1}}(n&gt;2) n(n+1)n1n<Sn<n(n1)nn11(n>2).
    解:
    毒瘤题。
    3.1. n ( n + 1 ) 1 n − n &lt; S n n(n+1)^{\frac{1}{n}}-n&lt;S_n n(n+1)n1n<Sn
    也就是说, n ( n + 1 ) 1 n &lt; S n + n n(n+1)^{\frac{1}{n}}&lt;S_n+n n(n+1)n1<Sn+n
    n ( n + 1 ) 1 n &lt; S n + n ( n + 1 ) 1 n &lt; S n + n n 由 均 值 不 等 式 ( 即 : n 个 数 的 和 除 n &gt; n 个 数 的 积 的 n 次 根 号 , 除 非 n 个 数 都 是 0 的 时 候 取 等 ) S n + n n = S n + 1 + 1... + 1 ( n 个 1 ) n = ∑ i = 1 n 1 i + 1 n &gt; ( 2 ∗ 3 2 . . . ∗ n + 1 n ) 1 n = ( n + 1 ) 1 n 3.1 证 毕 n(n+1)^{\frac{1}{n}}&lt;S_n+n \\ (n+1)^{\frac{1}{n}}&lt;\frac{S_n+n}{n}\\ 由均值不等式(即:n个数的和除n&gt;n个数的积的n次根号,除非n个数都是0的时候取等)\\ \frac{S_n+n}{n}=\frac{S_n+1+1...+1(n个1)}{n}\\ =\frac{\sum\limits_{i=1}^n{\frac{1}{i}+1}}{n}&gt;(2*\frac{3}{2}...*\frac{n+1}{n})^{\frac{1}{n}}=(n+1)^{\frac{1}{n}}\\ 3.1证毕 n(n+1)n1<Sn+n(n+1)n1<nSn+nnn>nn,n0nSn+n=nSn+1+1...+1(n1)=ni=1ni1+1>(223...nn+1)n1=(n+1)n13.1
    然后还有3.2
    那不是很水了么。。。把 S n S_n Sn移到右边, ( n − 1 ) n − 1 n − 1 (n-1)n^{-\frac{1}{n-1}} (n1)nn11移到左边,除一个 n − 1 n-1 n1,类似的方法做一下即珂。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值