【高中数学/基本不等式】若实数a>1,b>2,且满足2a+b-6=0,则1/(a-1)+2/(b-2)的最小值为?

【问题】

若实数a>1,b>2,且满足2a+b-6=0,则1/(a-1)+2/(b-2)的最小值为?

【解答】

符号表达式解释
 原式12a+b-6=0
2(a-1)+(b-2)=2形式变换(关键步骤)
 =2x+y=2设a-1=x,b-2=y
原式21/(a-1)+2/(b-2)
 =1/x+2/y设a-1=x,b-2=y
=(x+y/2)/x+(2x+y)/y将x+y/2=1及2x+y=2替换掉分子里的1和2
=1+y/2x+2x/y+1
=2+y/2x+2x/y 分子分母相乘可对消,基本不等式的机会出现
>=2+2*根号下(y/2x*2x/y)使用基本不等式 
=4

所以,1/(a-1)+2/(b-2)的最小值为4.

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值