PyTorch 张量

张量

张量是深度学习框架中最核心的组件,Tensor 实际上就是一个多维数组。
在PyTorch中,torch.Tensor 是存储和变换数据的主要工具。(与Numpy的多维数组类似)
张量

(一)创建张量 torch.Tensor

torch.Tensor 默认张量类型为torch.FloatTensor

import torch # 导入PyTorch

1. 根据现有数据创建张量

torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False)

# 从Python列表或序列构造张量
torch.tensor([[1., -1.], [1., -1.]])
>>> tensor([[ 1.0000, -1.0000],
            [ 1.0000, -1.0000]])
            
torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
>>> tensor([[ 1,  2,  3],
           [ 4,  5,  6]])
           
torch.tensor(3.14159)  # 创建一个标量
>>> tensor(3.1416)

torch.tensor([])  # 创建一个空张量
>>> tensor([])

2. 随机抽样创建张量

torch.*

3. 创建与另一张量具有相同大小/类型的张量

torch.*_like

x = torch.randn_like(x, dtype=torch.float) 
>>> tensor([[ 0.5344, 0.5095, 0.3691],
			[ 0.0160, 1.4369, 1.3419]])

4. 创建与另一张量具有相似类型但大小不同的张量

tensor.new_*

会默认重用输入Tensor的一些属性

# 返回的tensor默认具有相同的torch.dtype和torch.device
x = x.new_ones(2, 3, dtype=torch.float64) 
>>> tensor([[1., 1., 1.],
            [1., 1., 1.]], dtype=torch.float64)

5. 创建其他特征的张量

  • 全0张量
    torch.zeros(*size)
  • 全1张量
    torch.ones(*size)
  • [s,e),步长为step的一维张量,张量大小为(e-f)/step
    torch.arange(s,e,step)
  • [start, end),步长为step的一维张量,张量大小为(e-f)/step+1
    torch.range(s,e,step)
  • [s,e],均匀切分成steps份
    torch.linspace(s,e,step)
  • 对角线为1,其它为0的二维张量
    torch.eye(*size)
  • 以fill_value填充的张量
    torch.full(size, fill_value)

(二)张量属性 Tensor Attributes

1. 数据类型 torch.dtype

Pytorch有12种不同的数据类型。

2. 设备类型 torch.device

torch.device包含设备类型(“ cpu”或“ cuda”)和该设备类型的可选设备序号。如果不存在设备序号,则即使调用torch.cuda.set_device(),该对象也始终代表设备类型的当前设备。例如,使用设备“ cuda”构造的torch.Tensor等效于“ cuda:X”,其中X是torch.cuda.current_device()的结果。

3. 内存布局 torch.layout

The torch.layout class is in beta and subject to change.

torch.strided表示dense Tensors,是最常用的内存布局。每个跨步张量都有一个关联的torch.Storage,用于保存其数据。这些张量提供了存储的多维跨步视图。步幅是一个整数列表:第k个步幅表示在张量的第k个维度中从一个元素到下一个元素所需的内存跳转。这个概念使得可以有效地执行许多张量运算。

4. 内存格式 torch.memory_format

torch.memory_format 表示正在或将要分配torch.Tensor的内存格式。
可能的值为:

  • torch.contiguous_format
    张量正在或将在密集的非重叠内存中分配。步数由递减的值表示。
  • torch.channels_last
    张量正在或将在密集的非重叠内存中分配。步长由步长[0]>步长[2]>步长[3]>步长[1] == 1(即NHWC顺序)中的值表示。
  • torch.preserve_format
    在诸如clone之类的函数中使用,以保留输入张量的存储格式。如果将输入张量分配在密集的非重叠内存中,则会从输入中复制输出张量步幅。否则输出步幅将遵循torch.contiguous_format

(三)张量视图 Tensor Views

PyTorch允许张量是现有张量的视图。view tensor与其base tensor共享相同的基础数据和内存,修改view tensor(视图张量)也会更改base tensor(基本张量)。支持视图避免了显式的数据复制,因此允许我们进行快速高效的内存重塑、切片和元素操作。

1. 切片和索引操作

正索引由左向右从0开始,负索引由右向左从-1开始

# 切片操作基本表达式:
object[start_index:end_index:step]
# 当start_index省略时,表示从起点开始
# 当end_index省略时,表示到终点为止
# 若step=-1,表示从右往左取值

object[start_index:end_index]
# 此时默认step=1

object[start_index]
# 此时表示start_index指定的元素

2. 视图操作

detach() 返回与当前计算图分离的新Tensor,但是仍指向原张量的存放位置,不同之处只是requires_grad为false,得到的这个Tensor永远不需要计算其梯度,不具有grad。

.view() 返回一个数据与自张量相同,元素个数也相同,但形状不同的新张量。
虽然view返回的Tensor与源Tensor是共享data的,但是依然是一个新的Tensor(因为Tensor除了包含data外还有一些其他属性),二者id(内存地址)并不一致。
(只适用于连续的张量,否则需要调用.contiguous()方法 ,torch.reshape()不受此限制)

torch.view(-1) # 张量变成一维的
torch.view(-1,2) #自动补齐张量的长度
torch.view(2,-1) #自动补齐张量的宽度

// 通过shape或者size()来获取Tensor的形状:

print(x.size())
print(x.shape)

返回的torch.Size其实就是一个tuple, 支持所有tuple的操作。

// 如果想返回一个副本不共享data内存可用clone创建一个副本再用view(),使用clone还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源Tensor。

torch.t(input) 转置

torch.transpose(input, dim0, dim1) 在两个维度间进行转换

x=torch.Tensor(2,3,4,5) #这是一个4维的矩阵(只用空间位置,没有数据)
print(x.size())
>>> torch.Size([2, 3, 4, 5])
#先转置0维和1维,之后在第2,3维间转置,之后在第1,3间转置
y=x.transpose(0,1).transpose(3,2).transpose(1,3)
print(y.size())
>>> torch.Size([3, 4, 5, 2])

torch.Tensor.item() 从包含单个值的张量中获取Python数

x = torch.tensor([[1]])
>>> tensor([[ 1]])
x.item()
>>> 1
x = torch.tensor(2.5)
>>> tensor(2.5000)
x.item()
>>> 2.5

(四)算术操作

加法:add

print(x+y)
print(torch.add(x,y))
# 指定输出:
result = torch.empty(5,3)
torch.add(x,y,out=result)
print(result)
y.add_(x) # 原地操作
print(y)

原地操作改变张量用下划线后缀标记。
in-place size / stride / storage changes (such as resize_ / resize_as_ / set_ / transpose_) 不再更新原始张量,而是触发错误。

减法:sub
乘法:mul
除法:div

其他线性代数可参考官方文档。

(五)广播机制(broadcasting)

当对两个形状不同的Tensor按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个Tensor形状相同后再按元素运算。

x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
>>> tensor([[1, 2]])
>>> tensor([[1],
            [2],
            [3]])
>>> tensor([[2, 3],
            [3, 4],
            [4, 5]])

// 由于x和y分别是1行2列和3行1列的矩阵,如果要计算x + y,那么x中第一行的2个元素被广播(复制)到了第二行和第三行,而y中第一列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

(六)Tensor和NumPy相互转换

我们很容易用numpy()from_numpy()将Tensor和NumPy中的数组相互转换。但是需要注意: 这两个函数所产生的的Tensor和NumPy中的数组共享相同的内存,所以它们之间的转换很快,改变其中一个时另一个也会改变。

整理来源

https://tangshusen.me/Dive-into-DL-PyTorch/#/
https://pytorch.org/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值