Andrew Ng coursera上的《机器学习》ex7

本文详细介绍了在Coursera上Andrew Ng的《机器学习》课程中ex7的四个核心算法实现过程,包括findClosestCentroids.m用于寻找每个数据点最近的中心点;computeCentroids.m用于计算新的中心点;pca.m用于数据集的特征向量计算及数据压缩;projectData.m用于数据投影到低维空间;recoverData.m则用于从低维空间恢复数据。
摘要由CSDN通过智能技术生成

Andrew Ng coursera上的《机器学习》ex7

按照课程所给的ex7的文档要求,ex7要求完成以下几个计算过程的代码编写:
ex7要求

一、findClosestCentroids.m

要求是为每个数据点找到距离它最近的中心点。

function idx = findClosestCentroids(X, centroids)
%FINDCLOSESTCENTROIDS computes the centroid memberships for every example
%   idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids
%   in idx for a dataset X where each row is a single example. idx = m x 1 
%   vector of centroid assignments (i.e. each entry in range [1..K])
%

% Set K
K = size(centroids, 1);

% You need to return the following variables correctly.
idx = zeros(size(X,1), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Go over every example, find its closest centroid, and store
%               the index inside idx at the appropriate location.
%               Concretely, idx(i) should contain the index of the centroid
%               closest to example i. Hence, it should be a value in the 
%               range 1..K
%
% Note: You can use a for-loop over the examples to compute this.
%
for i=1:size(X,1)
    tmp=zeros(K,1);
    for j=1:K
        tmp(j)=sum((X(i,:)-centroids(j,:)).^2);
    end
    [~,  idx(i)]=min(tmp,[],1);

end;
% =============================================================
end

算法的思想:外层循环是针对每个数据点,内层循环是针对每个中心点。

二、computeCentroids.m

在一的基础上进行中心点的计算,就是求属于某个中心点的所有数据点的平均值,求出的结果作为这个簇的新的中心点。

function centroids = computeCentroids(X, idx, K)
%COMPUTECENTROIDS returs the new centroids by computing the means of the 
%data points assigned to each centroid.
%   centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by 
%   computing the means of the data points assigned to each centroid. It is
%   given a dataset X where each row is a single data point, a vector
%   idx of centroid assignments (i.e. each entry in range [1..K]) for each
%   example, and K, the number of centroids. You should return a matrix
%   centroids, where each row of centroids is the mean of the data points
%   assigned to it.
%
% Useful variables
[m n] = size(X);

% You need to return the following variables correctly.
centroids = zeros(K, n);


% ====================== YOUR CODE HERE ======================
% Instructions: Go over every centroid and compute mean of all points that
%               belong to it. Concretely, the row vector centroids(i, :)
%               should contain the mean of the data points assigned to
%               centroid i.
%
% Note: You can use a for-loop over the centroids to compute this.
%
num = zeros(K,1);
for k = 1:K
   for i = 1:m
      if idx(i) == k
          centroids(k,:) = centroids(k,:) + X(i,:);
          num(k) = num(k) + 1;
      end
    end
    centroids(k,:) = centroids(k,:)/num(k);
end
% =============================================================
end

计算平均值的公式就是直接总和除以个数的简单数学计算。

三、pca.m

要求求出数据集的特征向量,然后求出它的压缩之后的数据。

function [U, S] = pca(X)
%PCA Run principal component analysis on the dataset X
%   [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
%   Returns the eigenvectors U, the eigenvalues (on diagonal) in S
%
% Useful values
[m, n] = size(X);

% You need to return the following variables correctly.
U = zeros(n);
S = zeros(n);

% ====================== YOUR CODE HERE ======================
% Instructions: You should first compute the covariance matrix. Then, you
%               should use the "svd" function to compute the eigenvectors
%               and eigenvalues of the covariance matrix. 
%
% Note: When computing the covariance matrix, remember to divide by m (the
%       number of examples).
%

sig=1/m*X'*X;
[U, S ,V]=svd(sig);
% =========================================================================
end

四、projectData.m

要求是根据上一个算法求出的U,计算出相应的压缩之后的数据。

function Z = projectData(X, U, K)
%PROJECTDATA Computes the reduced data representation when projecting only 
%on to the top k eigenvectors
%   Z = projectData(X, U, K) computes the projection of 
%   the normalized inputs X into the reduced dimensional space spanned by
%   the first K columns of U. It returns the projected examples in Z.
%

% You need to return the following variables correctly.
Z = zeros(size(X, 1), K);

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the projection of the data using only the top K 
%               eigenvectors in U (first K columns). 
%               For the i-th example X(i,:), the projection on to the k-th 
%               eigenvector is given as follows:
%                    x = X(i, :)';
%                    projection_k = x' * U(:, k);
%

for  i=1:size(X,1)
    for k=1:K
    x= X(i, :)';
    Z(i,k) = x' * U(:, k);
    end
end
% =============================================================
end

recoverData.m

要求是求出压缩前的原始数据。

function X_rec = recoverData(Z, U, K)
%RECOVERDATA Recovers an approximation of the original data when using the 
%projected data
%   X_rec = RECOVERDATA(Z, U, K) recovers an approximation the 
%   original data that has been reduced to K dimensions. It returns the
%   approximate reconstruction in X_rec.
%

% You need to return the following variables correctly.
X_rec = zeros(size(Z, 1), size(U, 1));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the approximation of the data by projecting back
%               onto the original space using the top K eigenvectors in U.
%
%               For the i-th example Z(i,:), the (approximate)
%               recovered data for dimension j is given as follows:
%                    v = Z(i, :)';
%                    recovered_j = v' * U(j, 1:K)';
%
%               Notice that U(j, 1:K) is a row vector.
%               

for i=1:size(Z,1)
    for j=1:size(U,1)
    v = Z(i, :)';
     X_rec(i,j) = v' * U(j, 1:K)';
    end
end
% =============================================================
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值