Andrew Ng coursera上的《机器学习》ex7
按照课程所给的ex7的文档要求,ex7要求完成以下几个计算过程的代码编写:
一、findClosestCentroids.m
要求是为每个数据点找到距离它最近的中心点。
function idx = findClosestCentroids(X, centroids)
%FINDCLOSESTCENTROIDS computes the centroid memberships for every example
% idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids
% in idx for a dataset X where each row is a single example. idx = m x 1
% vector of centroid assignments (i.e. each entry in range [1..K])
%
% Set K
K = size(centroids, 1);
% You need to return the following variables correctly.
idx = zeros(size(X,1), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Go over every example, find its closest centroid, and store
% the index inside idx at the appropriate location.
% Concretely, idx(i) should contain the index of the centroid
% closest to example i. Hence, it should be a value in the
% range 1..K
%
% Note: You can use a for-loop over the examples to compute this.
%
for i=1:size(X,1)
tmp=zeros(K,1);
for j=1:K
tmp(j)=sum((X(i,:)-centroids(j,:)).^2);
end
[~, idx(i)]=min(tmp,[],1);
end;
% =============================================================
end
算法的思想:外层循环是针对每个数据点,内层循环是针对每个中心点。
二、computeCentroids.m
在一的基础上进行中心点的计算,就是求属于某个中心点的所有数据点的平均值,求出的结果作为这个簇的新的中心点。
function centroids = computeCentroids(X, idx, K)
%COMPUTECENTROIDS returs the new centroids by computing the means of the
%data points assigned to each centroid.
% centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by
% computing the means of the data points assigned to each centroid. It is
% given a dataset X where each row is a single data point, a vector
% idx of centroid assignments (i.e. each entry in range [1..K]) for each
% example, and K, the number of centroids. You should return a matrix
% centroids, where each row of centroids is the mean of the data points
% assigned to it.
%
% Useful variables
[m n] = size(X);
% You need to return the following variables correctly.
centroids = zeros(K, n);
% ====================== YOUR CODE HERE ======================
% Instructions: Go over every centroid and compute mean of all points that
% belong to it. Concretely, the row vector centroids(i, :)
% should contain the mean of the data points assigned to
% centroid i.
%
% Note: You can use a for-loop over the centroids to compute this.
%
num = zeros(K,1);
for k = 1:K
for i = 1:m
if idx(i) == k
centroids(k,:) = centroids(k,:) + X(i,:);
num(k) = num(k) + 1;
end
end
centroids(k,:) = centroids(k,:)/num(k);
end
% =============================================================
end
计算平均值的公式就是直接总和除以个数的简单数学计算。
三、pca.m
要求求出数据集的特征向量,然后求出它的压缩之后的数据。
function [U, S] = pca(X)
%PCA Run principal component analysis on the dataset X
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
%
% Useful values
[m, n] = size(X);
% You need to return the following variables correctly.
U = zeros(n);
S = zeros(n);
% ====================== YOUR CODE HERE ======================
% Instructions: You should first compute the covariance matrix. Then, you
% should use the "svd" function to compute the eigenvectors
% and eigenvalues of the covariance matrix.
%
% Note: When computing the covariance matrix, remember to divide by m (the
% number of examples).
%
sig=1/m*X'*X;
[U, S ,V]=svd(sig);
% =========================================================================
end
四、projectData.m
要求是根据上一个算法求出的U,计算出相应的压缩之后的数据。
function Z = projectData(X, U, K)
%PROJECTDATA Computes the reduced data representation when projecting only
%on to the top k eigenvectors
% Z = projectData(X, U, K) computes the projection of
% the normalized inputs X into the reduced dimensional space spanned by
% the first K columns of U. It returns the projected examples in Z.
%
% You need to return the following variables correctly.
Z = zeros(size(X, 1), K);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the projection of the data using only the top K
% eigenvectors in U (first K columns).
% For the i-th example X(i,:), the projection on to the k-th
% eigenvector is given as follows:
% x = X(i, :)';
% projection_k = x' * U(:, k);
%
for i=1:size(X,1)
for k=1:K
x= X(i, :)';
Z(i,k) = x' * U(:, k);
end
end
% =============================================================
end
recoverData.m
要求是求出压缩前的原始数据。
function X_rec = recoverData(Z, U, K)
%RECOVERDATA Recovers an approximation of the original data when using the
%projected data
% X_rec = RECOVERDATA(Z, U, K) recovers an approximation the
% original data that has been reduced to K dimensions. It returns the
% approximate reconstruction in X_rec.
%
% You need to return the following variables correctly.
X_rec = zeros(size(Z, 1), size(U, 1));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the approximation of the data by projecting back
% onto the original space using the top K eigenvectors in U.
%
% For the i-th example Z(i,:), the (approximate)
% recovered data for dimension j is given as follows:
% v = Z(i, :)';
% recovered_j = v' * U(j, 1:K)';
%
% Notice that U(j, 1:K) is a row vector.
%
for i=1:size(Z,1)
for j=1:size(U,1)
v = Z(i, :)';
X_rec(i,j) = v' * U(j, 1:K)';
end
end
% =============================================================
end