Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

Have you met this question in a real interview?  
Yes
Example

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

题目属于简单的DP问题,但是Note有要求,开辟的空间最多为O(n),n为层数。因为是三角形,所以i层的数的个数大于i - 1层的个数,那么可以分配一个第n层大小的数组,tmpMin[i]表示经过上几层到达n层的i点的最小路径值,这样到达最后一层就可以记录从最少一层到达最后一层个点的最小值,然后取最小值,作为整个三角形的最小值。对于每一层的一个点i,上一层与其相邻的是点i,i-1两个点,所以tmpMin[i]是上一层的min{tmpMin[i], tmpMin[i - 1]},有了这个子问题描述之后,代码就好写了。但是注意一个细节,对于每一层的tmpMin[i]计算,应该从后向前,即for i = len - 1 ... 0,这样做是为了保证子问题中的tmpMin[i - 1]是上一层的,而不是当前层的。

class Solution {
public:
    /**
     * @param triangle: a list of lists of integers.
     * @return: An integer, minimum path sum.
     */
    int minimumTotal(vector<vector<int> > &triangle) {
        // write your code here
        int len = triangle.size();
        if(len < 1)
            return 0;
        if(len == 1)
            return triangle[0][0];
        vector<int> tmpMin(len, 0);
        for(int i = 0; i < len; ++i)
        {
            if(i == 0)
            {
                tmpMin[0] = triangle[0][0];
                continue;
            }
            
            int tmpLen = triangle[i].size();
            if(i > 0)
                tmpMin[tmpLen - 1] = triangle[i][tmpLen - 1] + tmpMin[tmpLen - 2];
            
            for(int j = tmpLen - 2; j >= 0; --j)
            {
                int tmp = tmpMin[j];
                if(j > 0)
                    tmp = (tmp > tmpMin[j - 1]) ? tmpMin[j - 1] : tmp;
                tmpMin[j] = tmp + triangle[i][j];
            }
        }
        
        int min = INT_MAX;
        for(int i = 0; i < len; ++i)
        {
            min = (min > tmpMin[i]) ? tmpMin[i] : min;
        }
        
        return min;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值