sklearn中的聚类算法K-Means

### K-Means聚类算法原理 K-Means是一种基于划分的无监督机器学习方法,旨在将一组未标记的数据划分为若干个簇(cluster),使得同一簇内的对象相似度尽可能高,而不同簇之间的对象差异较大。具体来说,该算法通过迭代优化来最小化各簇内样本到其对应质心的距离平方和。 #### 初始化阶段 首先随机选取\( k \)个初始中心点作为各个簇的心脏位置,在这里\( k \)表示预期得到的类别数量[^1]。 #### 迭代更新过程 对于每一轮迭代: - **分配步骤**:计算所有数据点与当前已知质心间的距离,并据此决定它们所属的最佳簇;通常采用欧几里得距离衡量这种接近程度。 - **更新步骤**:重新计算每个新形成的簇的新质心坐标,即取属于同一个组的所有成员坐标的平均值作为新的代表向量[^2]。 上述两个操作会不断重复直到满足特定条件为止——比如达到最大允许循环次数或是前后两次所得结果相差甚微不再显著变化时停止运算。 ### Python实现示例 下面给出一段简单的Python代码用于展示如何利用`scikit-learn`库来进行基本的KMeans聚类分析: ```python from sklearn.cluster import KMeans import numpy as np # 创建模拟二维空间中的观测数据集 X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) # 定义并训练模型 (指定要找寻三个群集) kmeans_model = KMeans(n_clusters=3).fit(X) # 输出最终获得的分类标签以及对应的质心位置 print("Labels:", kmeans_model.labels_) print("Centroids:\n", kmeans_model.cluster_centers_) ``` 此段脚本先构建了一个小型的人工数据集合,接着调用了Scikit-Learn提供的现成工具完成整个建模流程,最后打印出了预测出来的分组情况还有各自的核心节点所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值