ts15_Forecast multiple seas_mSTL_make_subplot_rMSPE_UCM_date format_NeuralProphet_changepoint_StateS

本文探讨了处理具有复杂季节性的时间序列数据的算法,如使用MSTL进行多重季节性分解,利用Unobserved Components Model (UCM)、Prophet和NeuralProphet进行预测。通过小时级能源消耗数据展示了不同方法的效果比较,并介绍了状态空间模型和卡尔曼滤波器在处理噪声或不完整测量值时的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     Time series data can contain complex seasonality – for example, recorded hourly data can exhibit daily, weekly, and yearly seasonal patterns. With the rise of connected devices – for example, the Internet of Tings (IoT物联网:是指通过各种信息传感器、射频识别技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值