NumericalComputingWithPython
文章平均质量分 95
LIQING LIN
这个作者很懒,什么都没留下…
展开
-
n9_Adding Interactivity & Animating Plots_BeautifulSoup_Interactive backends_Tkinter_Plot.ly_FFmpeg
As a book focusing on the use of Matplotlib through elaborate[ɪˈlæbərət; ɪˈlæbəreɪt]详尽的 examples, we opted[ɑːptɪd]选择 to defer or simplify our discussion of the internals. For those of you who want to understand the nuts and bolts具体细节 that make Matplot...原创 2021-11-15 09:29:53 · 871 阅读 · 1 评论 -
n8_Visualizing Multivariate_sns_3D plot_matplotlib.dates_mpl_finance_aapl stock_EMA_RSI_Bollinger
When we have big data that contains many variables, the plot types in Chapter 7, Visualizing Online Data may no longer be an effective way of data visualization. We may try to cramp[kræmp]受限制的 as many variables in a single plot as possible, but the ov...原创 2021-11-12 08:19:35 · 1430 阅读 · 0 评论 -
n6_Hello Plotting World_matplotlib_plt.savefig()
To learn programming, we often start with printing the "Hello world!" message. For graphical plots that contain all the elements from data, axes, labels, lines and ticks, how should we begin? This chapter gives an overview of Matplotlib's functi...原创 2021-10-30 05:43:08 · 528 阅读 · 0 评论 -
n05_Reinforcement Q-Learnining_MDP_getattr_Monte Carlo_Blackjack_Driving office_ε-greedy_SARSA_Bellm
Reinforcement learning (RL) is the third major section of machine learning after supervised and unsupervised learning. These techniques have gained a lot of traction in recent years in the application of artificial intelligence. In reinforcement learn...原创 2021-10-20 07:01:32 · 1543 阅读 · 0 评论 -
n4_Unsupervised_kmean++_elbow_silhouette_inertia_eigenV_pca_font_kwargs_variance_PCA(慎svd)_autoEncod
The goal of unsupervised learning is to discover the hidden patterns or structures of the data in which no target variable exists to perform either classification or regression methods. Unsupervised learning methods are often more challenging, as the ...原创 2021-10-06 22:10:52 · 2282 阅读 · 0 评论 -
n3_knn breastCancer NaiveBayesLikelihood_voter_manhat_Euclid_Minkow_空值?_SBS特征选取_Laplace_zip_NLP_spam
In the n2_Tree ML Models_HR data_Chi-square_SAMME_AdaBoost_GradientBoosting_XGBoost_class weight_Ensemble_Linli522362242的专栏-CSDN博客, we have learned about computationally intensive methods. In contrast, this chapter discusses the simple methods to bala...原创 2021-09-19 08:11:28 · 984 阅读 · 0 评论 -
n2_Tree ML Models_HR data_Chi-square_SAMME_AdaBoost_GradientBoosting_XGBoost_class weight_Ensemble
The goal of tree-based methods is to segment the feature space into a number of simple rectangular regions, to subsequently make a prediction for a given observation based on either mean or mode (mean for regression and mode for classification, to be ...原创 2021-09-12 08:30:13 · 989 阅读 · 2 评论 -
#1_Statistics_agent_policy_explanatory_predictor_response_numeric_mode_Hypothesis_Type I_Chi-squ
Journey from Statistics to Machine LearningIn recent times,machine learning(ML) and data science have gained popularity like never before. This field is expected to grow exponentially in the comin...原创 2019-10-07 06:37:10 · 1718 阅读 · 2 评论 -
n7_Visualizing Online Data_pycountry_scientific notation_sns_plot_quandl api
Visualizing Online DataAt this point, we have already covered the basics of creating and customizing plots using Matplotlib. In this chapter, we begin the journey of understanding more advanced Matp...原创 2021-11-04 08:37:36 · 1679 阅读 · 1 评论