pip配置darkflow+yolo环境:win10+darkflow+yolo

注:在环境搭建之前需要先配置tensorflow的环境,具体可参考链接https://blog.csdn.net/weixin_39290638/article/details/80045236

链接中在“3. 安装tensorflow1.7”步骤在配置清华源时可能会失败,用Anaconda Powershell Prompt

打开重新配置即可。

依赖环境:

a、Python 3.5

b、TensorFlow1.5

c、OpenCV 3.4

d、anaconda3

一、在安装darkflow之前首先安装Cpython和opencv

1、install Cpython

pip install Cython

2、install opencv

pip install opencv-python 

二、darkflow下载安装

  • 源文件地址:github.com/thtrieu/darkflow  点击download即可将源码下载到本地
  • 编译darkflow  ,点击开始->anaconda->Anaconda Prompt,将路径切换到 darkflow 所在目录。输入指令:
python setup.py build_ext --inplace

 即可完成编译。

Anaconda Prompt命令行输入python flow --h,如果没有错误信息表示安装成功,如果提示“ModuleNotFoundError: No module named 'darkflow.cython_utils.cy_yolo_findboxes”提示,表示没有输入python setup.py build_ext --inplace,重新输入即可。

                       

                                                                           图1 未执行安装命令

三、测试yolo

  • 下载权重文件,可以接点击https://pjreddie.com/media/files/yolo.weights下载,也可yolo官网下载,官网网址为https://pjreddie.com/darknet/yolo/,点击weights即可下载。下载后将权重文件复制到darkflow的bin文件下。
  • 点击开始->anaconda->Anaconda Prompt,将文件夹的位置定位到darkflow的根目录下。
  • 在命令行输入:conda activate tensorflow
  • 在命令行执行
    python flow --imgdir sample_img/ --model cfg/yolo.cfg --load bin/yolo.weights

    --imgdir制定测试数据的目录。我们使用darkflow自己的测试数据,位于\darkflow\sample_img下(这里最好加绝对路径,例如我的D:\install\darkflow\darkflow\sample_img),--model 指定cfg文件,位于cfg/下 --load指定权重文件,即我刚才下载的文件,位于bin/目录下。python flow --imgdir sample_img/ --model cfg/yolo.cfg --load bin/yolo.weights --gpu 1.0 表示使用gpu加速

 如果出现下图标记的内容表示测试成功,在sample_img的out文件夹中可以看到检测结果。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值