
计算机视觉
叫我AC
不写注释就是耍流氓
展开
-
Iou交并比的直观解释
原创 2020-11-24 19:56:02 · 731 阅读 · 0 评论 -
ATOM: Accurate Tracking by Overlap Maximization
关于ATOM的两篇解读文章1.https://blog.csdn.net/hey_youngman/article/details/906388082.https://blog.csdn.net/sinat_27318881/article/details/84668861原创 2019-11-17 12:51:03 · 242 阅读 · 0 评论 -
OTB评测标准及代码实现
1.修改路径,transferresult.m第一个路径是数据集,第二个是python文件跑出的txt文件的路径2.python跑出来的txt文件需要转成mat文件运行transferresult.m文件3.把之前的文件删除4.运行5.运行就可以画出PR/SR的图了,PR精确度,SR成功率以下是文件:链接: https://pan.baidu.c...原创 2019-11-04 17:10:39 · 994 阅读 · 0 评论 -
SMBO(SequentialModel-Based GlobalOptimization)
序贯模型优化(Sequential model-based optimization,SMBO),是最有效的函数优化方法之一。与共轭梯度下降法等标准优化策略相比,SMBO的优势有:利用平滑性而无需计算梯度;可处理实数、离散值、条件变量等;可处理大量(成百上千)变量并行优化。贝叶斯优化是参数优化的自适应方法,在探索参数空间的新区域之间进行权衡,并利用历史信息来找到快速最大化函数的参数。像随机搜索...原创 2019-08-09 22:27:25 · 3322 阅读 · 0 评论 -
DBN
让我们把时间拨回到2006年以前,神经网络自20世纪50年代发展起来后,因其良好的非线性能力、泛化能力而备受关注。然而,传统的神经网络仍存在一些局限,在上个世纪90年代陷入衰落,主要有以下几个原因:1、传统的神经网络一般都是单隐层,最多两个隐层,因为一旦神经元个数太多、隐层太多,模型的参数数量迅速增长,模型训练的时间非常之久;2、传统的神经网络,随着层数的增加,采用随机梯度下降的话一般很难找到...转载 2019-08-09 21:49:31 · 758 阅读 · 0 评论 -
pytorch使用多个GPU并行跑
https://blog.csdn.net/gaishi_hero/article/details/81139045转载 2019-08-13 19:33:13 · 5980 阅读 · 0 评论 -
concatenation级联神经网络
在看论文的时候碰到concatenation,作为小白的我,不知道是什么。百度百科:级联相关神经网络是从一个小网络开始,自动训练和添加隐含单元,最终形成一个多层的结构。级联相关神经网络具有以下优点:学习速度快;自己决定神经元个数和深度;训练集变化之后还能保持原有的结构;不需要后向传播错误信号。...原创 2019-08-06 22:10:03 · 6769 阅读 · 4 评论 -
RoIPooling和RoIAlign
一)、RoIPooling 这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络...原创 2019-08-31 10:46:15 · 208 阅读 · 0 评论 -
服务器常用命令
nvidia-smi、gpustat -cpu# 查显卡使用情况top -i# 查各个进程free -m# 查内存使用原创 2019-08-02 15:00:47 · 122 阅读 · 0 评论 -
神经网络实现逻辑与
https://zhuanlan.zhihu.com/p/59589638转载 2019-08-05 19:33:09 · 1090 阅读 · 0 评论 -
IOU重叠度
重叠度(IOU):物体检测需要定位出物体的bounding box,就像下面的图片一样,我们不仅要定位出车辆的bounding box 我们还要识别出bounding box 里面的物体就是车辆。对于bounding box的定位精度,有一个很重要的概念: 因为我们算法不可能百分百跟人工标注的数据完全匹配,因此就存在一个定位精度评价公式:IOU。 它定义了两个bounding b...原创 2019-08-10 15:42:11 · 2016 阅读 · 0 评论 -
非极大值抑制(NMS)
非极大值抑制(NMS):RCNN会从一张图片中找出n个可能是物体的矩形框,然后为每个矩形框为做类别分类概率:就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制的方法是:先假设有6个矩形框,根据分类器的类别分类概率做排序,假设从小到大属于车辆的概率 分别为A、B、C、D、E、F。(1)从最大概率矩形框F开始,分别判断A~...原创 2019-08-10 15:46:08 · 310 阅读 · 0 评论 -
Bounding Box Regression边框回归
边框回归是什么?对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于下图, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口G怎么实现边框回归?那么经过何种变换才能从图 2 中的窗口 P 变为窗口G^...原创 2019-08-10 16:01:22 · 249 阅读 · 0 评论 -
深度学习中什么是端到端的学习/训练
传统的图像识别问题往往通过分治法将其分解为预处理,特征提取和选择,分类器设计等若干步骤。分治法的动机是将图像识别的母问题分解为简单、可控且清晰的若干小的子问题。不过分步解决子问题时,尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。深度学习提供了一种端到端的学习范式,整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的...原创 2019-08-10 16:09:25 · 5909 阅读 · 0 评论 -
目标检测之R-CNN/Fast R-CNN/Faster R-CNN
目标检测是深度学习的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤:1、分类,识别物体是什么2、定位,找出物体在哪里除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示:这个问题并不是那么容易解决,由于物体的尺寸变化范围很大、摆放角度多变、姿态不定,而且物体有很多种类别,可以在图片中出现多种物体、出现在任意位置。因此,目标检...转载 2019-08-10 16:28:46 · 410 阅读 · 0 评论 -
代价函数,损失函数,目标函数
定义:损失函数(Loss Function ):定义在单个样本上的,计算的是一个样本的误差。代价函数(Cost Function ):定义在整个训练集上的,是所有样本误差的平均,计算的是损失函数的平均。有的地方将损失函数和代价函数没有进行区分,也就是损失函数 = 代价函数。目标函数(Object Function):最终需要优化的函数。等于经验风险+结构风险(也就是Cost Fun...原创 2019-08-12 11:02:47 · 414 阅读 · 0 评论 -
梯度下降
本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例!梯度下降的场景假设梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的...转载 2019-08-12 11:05:44 · 179 阅读 · 0 评论 -
计算机视觉专业术语大全(实时更新)
MOT:Multiple Object Tracking 多目标跟踪Appearancemodel:外观模型,在多目标跟踪中用来提取有鉴别力的特征。MIL:Multiple Instance Learning多示例学习BaseLine你训练一个模型,获得了80%的准确率,你觉得很高吗?不能这么说,因为你没有与别人的东西作对比。也就是说“something else”就是ba...原创 2019-08-29 14:59:12 · 1689 阅读 · 0 评论 -
目标追踪(tracking)简介
视觉目标跟踪是计算机视觉中的一个重要研究方向,有着广泛的应用,如:视频监控,人机交互,无人驾驶等。过去二三十年视觉目标跟踪技术取得了长足的进步,特别是最近两年利用深度学习的目标跟踪方法取得了令人满意的效果,使目标跟踪技术获得了突破性的进展。本文旨在简要介绍:目标跟踪的基本流程与框架,目标跟踪存在的挑战,目标跟踪相关方法,以及目标跟踪最新的进展等,希望通过这篇文章能让读者对视觉...转载 2019-09-12 15:04:08 · 26091 阅读 · 5 评论 -
正则化的理解
正则化的概念及原因简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度。正则化的几种常用方法数据增强更大数...转载 2019-08-05 10:56:56 · 648 阅读 · 0 评论 -
surrogate function
surrogate function,即代理函数或者替代函数。一般是指当目标函数非凸、不连续时,数学性质不好,优化起来比较复杂,这时候需要使用其他的性能较好的函数进行替换。...原创 2019-07-26 16:39:23 · 2099 阅读 · 0 评论 -
LeNet5 卷积
论文:LeNet Gradient-Based Learning Applied to Document Recognition作者及出版处:Yann Lecun , Léon Bottou , Yoshua Bengio , Patrick Haffner;Proceedings of the IEEE1998年Yann LeCun在论文“Gradient-Based Learning ...转载 2019-07-31 15:26:14 · 259 阅读 · 0 评论 -
CNN中池化的作用?为什么要选择池化
池化也就是pooling,池化层在卷积层之后。在对输入图像进行卷积之后,得到feature map,也就是特征图。池化操作是对feature map进行操作,又分为平均池化和最大池化。平均池化:倾向于保留突出背景特征最大池化:倾向于保留突出纹理特征卷积的作用就是为了提取某些指定的特征,而池化就是为了进一步抽取更高阶的特征。通过池化操作忽略一些细节信息,强行让CNN学到的更多我们想...原创 2019-07-29 10:36:56 · 10311 阅读 · 0 评论 -
图像操作为什么要使用卷积?卷积的真正含义
CNN 又叫 Convolutional neural network, 中文名有叫卷积神经网络,它怎么来的,它有多牛逼,这就不多说了,大家网上查。希望大家在看之前有一点点基本的computer vision 和CNN 的基本知识。我们第一部分先讲 Convolution,到底什么是卷积,别忙,大家都用过某美颜软件吧,比如我老婆新垣结衣:美的不要的不要的...转载 2019-07-29 09:34:50 · 14324 阅读 · 5 评论 -
Alex各层卷积计算详解
原po:https://blog.csdn.net/Gilgame/article/details/85056344转载 2019-07-18 20:06:29 · 583 阅读 · 0 评论 -
计算机视觉中的top-1和top-5
【ImageNet】ImageNet 项目是一个用于物体对象识别检索大型视觉数据库。截止2016年,ImageNet 已经对超过一千万个图像进行手动注释,标记图像的类别。在至少一百万张图像中还提供了边界框。自2010年以来,ImageNet 举办一年一度的软件竞赛,叫做(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)。主要...转载 2019-07-18 19:53:40 · 822 阅读 · 0 评论 -
卷积核和padding的计算关系
原博:https://blog.csdn.net/qq_41670192/article/details/79231732通过卷积层与池化层后,特征图的大小怎么计算这里引入cs231n中的课件说明一下:卷积层:参数:W:宽 H:高 D:深度 K:卷积核的个数 F:卷积核的大小 S:步长 P:用0填充W/H=[(输入大小-卷积核大小+2*P)/步长] +1. 举...转载 2019-07-18 17:27:53 · 5143 阅读 · 0 评论 -
深度学习中的优化函数
原博:https://www.cnblogs.com/adong7639/p/9850379.html“说到优化算法,入门级必从 SGD 学起,老司机则会告诉你更好的还有AdaGrad / AdaDelta,或者直接无脑用 Adam。可是看看学术界的最新 paper,却发现一众大神还在用着入门级的 SGD,最多加个 Momentum 或者Nesterov,还经常会黑一下 Adam。这是为什...转载 2019-07-18 16:14:06 · 628 阅读 · 2 评论 -
深度学习中的激活函数
本文从激活函数的背景知识开始介绍,重点讲解了不同类型的非线性激活函数:Sigmoid、Tanh、ReLU、LReLU、PReLU、Swish,并详细介绍了这些函数的优缺点。原博:http://www.360doc.com/content/17/1102/21/1489589_700400500.shtml1. 什么是激活函数?生物神经网络启发了人工神经网络的发展。但是,...转载 2019-07-18 14:48:11 · 354 阅读 · 0 评论 -
Siamese network
名字的由来Siamese和Chinese有点像。Siam是古时候泰国的称呼,中文译作暹罗。Siamese也就是“暹罗”人或“泰国”人。Siamese在英语中是“孪生”、“连体”的意思,这是为什么呢?十九世纪泰国出生了一对连体婴儿,当时的医学技术无法使两人分离出来,于是两人顽强地生活了一生,1829年被英国商人发现,进入马戏团,在全世界各地表演,1839年他们访问美国北卡罗莱那州后来成为“玲...转载 2019-07-14 07:49:58 · 284 阅读 · 0 评论 -
pycharm导入同级目录报错 from import
PyCharm同级目录导入模块会提示错误,但是可以运行解决:在当前目录右键make_directory as-->Sources Root1如果需要多级导入,可以试试添加到系统路径import syssys.path.append('b模块的绝对路径')import b---------------------原文:https://blog...转载 2019-07-29 16:57:29 · 770 阅读 · 0 评论 -
深度学习免费数据集
金融美国劳工部统计局官方发布数据 上证A股日线数据,1999.12.09 至 2016.06.08,前复权,1095支股票 深证A股日线数据,1999.12.09 至 2016.06.08,前复权,1766支股票 深证创业板日线数据,1999.12.09 至 2016.06.08,前复权,510支股票 MT4平台外汇交易历史数据 Forex平台外汇交易历史数据 几组外汇交易逐笔(T...转载 2019-07-20 11:30:06 · 280 阅读 · 0 评论 -
BP反向传播计算
假设,你有这样一个网络层: 第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。 现在对他们赋上初值,如下图: 其中,输入数据 i1=0.05,i2=0.10; 输出数据 o1=0.01,o2=0....转载 2019-07-31 14:58:59 · 323 阅读 · 0 评论 -
为什么要进行衰减
学习率衰减(learning rate decay)在训练神经网络时,使用学习率控制参数的更新速度。学习率较小时,会大大降低参数的更新速度;学习率较大时,会使搜索过程中发生震荡,导致参数在极优值附近徘徊。为此,在训练过程中引入学习率衰减,使学习率随着训练的进行逐渐衰减。常见衰减:tf.train.piecewise_constant 分段常数衰减tf.train.inverse_t...转载 2019-07-26 10:49:06 · 438 阅读 · 0 评论 -
复现RT-MDNet
1.download源码:https://github.com/IlchaeJung/RT-MDNet2.看配置要求0.2.1<=pytorch<=0.4.1,注意这里的pytorch版本高过0.4.1就跑不起来了,原因是:在pytorch 1.0.1等高版本中,torch.utils.ffi被弃用了,需要用其他包来替代。这就需要改代码,所以最好的办法是版本回退。这也是一...原创 2019-07-31 10:01:09 · 1121 阅读 · 9 评论 -
深度学习中的隐藏层是干什么的?
隐藏层的意义要说明隐藏层的意义,需要从两个方面理解,一个是单个隐藏层的意义,一个是多层隐藏层的意义。单个隐藏层的意义隐藏层的意义就是把输入数据的特征,抽象到另一个维度空间,来展现其更抽象化的特征,这些特征能更好的进行线性划分。举个栗子,MNIST分类。输出图片经过隐藏层加工, 变成另一种特征代表 (3个神经元输出3个特征), 将这3个特征可视化出来。就有了下面这张图, 我们发现中...转载 2019-07-25 21:34:26 · 42488 阅读 · 21 评论 -
BN(批量归一化)
一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,这个算法目前已经被大量的应用,最新的文献算法很多都会引用这个算法,进行网络训练,可见其强大之处非同一般啊。近年来深度学习捷报...转载 2019-07-25 10:29:04 · 519 阅读 · 0 评论 -
如何理解交叉熵
信息论交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。1 信息量首先是信息量。假设我们听到了两件事,分别如下:事件A:巴西队进入了2018世界杯决赛圈。事件B:中国队进入了2018世界杯决赛圈。仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的...转载 2019-07-25 09:17:21 · 3866 阅读 · 2 评论 -
MDNet复现
python run_tracker.py -s DragonBaby -d算法开始跟踪,这里配置的是源码包自带的视频DragonBaby。绿色矩形框表示ground-truth,红色矩形框表示算法resultpython ./tracking/run_tracker.py -s DragonBaby -d...原创 2019-07-29 21:59:32 · 383 阅读 · 0 评论 -
正样本和负样本
视觉任务中,有分类和目标检测等问题。例如将图片中人和除人之外的东西分开,那么人就是所谓正样本,除人之外的东西就是负样本。原创 2019-07-29 20:43:51 · 4848 阅读 · 0 评论