题目描述
如果一个图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。
我们定义奇点是指跟这个点相连的边数目有奇数个的点。对于能够一笔画的图,我们有以下两个定理。
定理1:存在欧拉路的条件:图是连通的,有且只有2个奇点。
定理2:存在欧拉回路的条件:图是连通的,有0个奇点。
两个定理的正确性是显而易见的,既然每条边都要经过一次,那么对于欧拉路,除了起点和终点外,每个点如果进入了一次,显然一定要出去一次,显然是偶点。对于欧拉回路,每个点进入和出去次数一定都是相等的,显然没有奇点。
求欧拉路的算法很简单,使用深度优先遍历即可。
根据一笔画的两个定理,如果寻找欧拉回路,对任意一个点执行深度优先遍历;找欧拉路,则对一个奇点执行dfs,时间复杂度为O(m+n),m为边数,n为点数。
输入
第一行:n,m,有n个点,m条边,两个数之间用空格隔开
以下m行描述每条边连接的两点。两个数之间用空格隔开
输出
欧拉路或者欧拉回路,两个数之间用空格隔开
样例输入
5 5
1 2
2 3
3 4
4 5
5 1
样例输出
1 5 4 3 2 1
提示
n,m<=1000
#include<bits/stdc++.h>
using namespace std;
int n,e,circuitpos,i,j,x,y,start,f[101],g[101][101],du[101],circuit[101];
void fcir(int i)
{
int j;
for(j=1;j<=n;j++)
{
if(g[i][j]==1)
{
g[i][j]=g[j][i]=0;
fcir(j);
}
}
circuit[++circuitpos]=i;
}
int main()
{
memset(g,0,sizeof(g));
scanf("%d%d",&n,&e);
for(i=1;i<=e;i++)
{
scanf("%d%d",&x,&y);
g[x][y]=g[y][x]=1;
du[x]++;
du[y]++;
}
start=1;
for(int i=1;i<=n;i++)
{
if(du[i]%2==1)
start=i;
}
circuitpos=0;
fcir(start);
for(i=1;i<=circuitpos;i++)
{
cout<<circuit[i]<<" ";
}
cout<<endl;
return 0;
}