【考研数学公式】11道基本定理

设f(x)在[a,b]上连续,则

定理1(有界定理) ∣ f ( x ) ∣ ≤ M    ( M > 0 ) \lvert f(x) \rvert\leq M \ \ (M>0) f(x)∣M  (M>0)
定理2(最值定理) m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M,其中m,M分别为f(x)在 [a, b] 上的最小值与最大值
定理3(介值定理)当 m ≤ μ ≤ M 时, ∃ ξ ϵ [ a , b ] ,使得 f ( ξ ) = μ m \leq \mu \leq M\text{时,} \exists \xi \epsilon{[a,b]}\text{,使得}f(\xi)=\mu mμM时,ξϵ[a,b],使得f(ξ)=μ
定理4(零点定理)当 f ( a ) ⋅ f ( b ) < 0 时, ∃ ξ ϵ ( a , b ) ,使得 f ( ξ ) = 0 f(a)\cdot f(b)<0\text{时,}\exists \xi\epsilon(a,b)\text{,使得}f(\xi)=0 f(a)f(b)<0时,ξϵ(a,b),使得f(ξ)=0
定理5(费马定理)

设f(x)满足在 x 0 点处 { (1)可导, (2)取极值, 则 f ′ ( x 0 ) = 0 \text{设f(x)满足在}x_0\text{点处} \begin{cases} \text{(1)可导,}\\ \text{(2)取极值,} \end{cases}\text{则}f'(x_0)=0 f(x)满足在x0点处{(1)可导,(2)取极值,f(x0)=0

定理6(罗尔定理)

设f(x)满足 { (1)[a, b]上连续, (2)(a, b)内可导, (3)f(a) = f(b), 则, ∃ ξ ϵ ( a , b ) , 使得 f ′ ( ξ ) = 0 \text{设f(x)满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \\ \text{(3)f(a) = f(b),} \end{cases}\text{则,}\exists\xi\epsilon(a,b),\text{使得}f'(\xi)=0 f(x)满足 (1)[a, b]上连续,(2)(a, b)内可导,(3)f(a) = f(b)则,ξϵ(a,b),使得f(ξ)=0

定理7(拉格朗日中值定理)

设f(x)满足 { (1)[a, b]上连续, (2)(a, b)内可导, 则, ∃ ξ ϵ ( a , b ) ,使得 \text{设f(x)满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \end{cases}\text{则,}\exists\xi\epsilon(a,b) \text{,使得} f(x)满足{(1)[a, b]上连续,(2)(a, b)内可导,则,ξϵ(a,b),使得
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

或者写成

f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

定理8(柯西中值定理)

设 f ( x ) 满足 { (1)[a, b]上连续, (2)(a, b)内可导, (3) g ′ ( x ) ≠ 0 , 则, ∃ ξ ϵ ( a , b ) , 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) . \text{设}f(x)\text{满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \\ \text{(3)}g'(x)\ne0, \end{cases}\text{则,}\exists\xi\epsilon(a,b),\text{使得} \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}. f(x)满足 (1)[a, b]上连续,(2)(a, b)内可导,(3)g(x)=0,则,ξϵ(a,b),使得g(b)g(a)f(b)f(a)=g(ξ)f(ξ).

定理9(泰勒公式)
(1)带拉格朗日余项的n阶泰勒公式

设f(x)在点 x 0 x_0 x0的某个领域内有n+1阶导数存在,则对该领域内的任意点x均有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1  , \begin{array}{l} f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots +\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n \\ +\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\text{ ,} \end{array} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1 
其中 ξ 介于 x , x 0 之间 \text{其中}\xi\text{介于}x,x_0\text{之间} 其中ξ介于x,x0之间

(2)带佩亚诺余项的n阶泰勒公式

设f(x)在点 x 0 x_0 x0处n阶可导,则存在 x 0 x_0 x0的一个领域,对于该领域中的任一点,成立
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) . \begin{array}{l} f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n \\ \\ +o((x-x_0)^n). \end{array} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+o((xx0)n).

定理10(导数零点定理)
设f(x)在[a,b]上可导,当 f + ′ ( a ) ⋅ f − ′ ( b ) < 0  时, ∃ ξ ϵ ( a , b ) ,使得 f ′ ( ξ ) = 0 f'_+(a)\cdot f'_-(b)< 0 \text{ 时,}\exists \xi\epsilon(a,b)\text{,使得}f'(\xi)=0 f+(a)f(b)<0 时,ξϵ(a,b),使得f(ξ)=0
定理11(导数介值定理)
设f(x)在[a,b]上可导,若 f + ′ ( a ) ≠ f − ′ ( b ) , 则 ∀ μ 介于 f + ′ ( a ) 与 f − ′ ( b ) 之间, ∃ ξ ϵ ( a , b ) ,使得 f ′ ( ξ ) = μ f'_+(a)\ne f'_-(b)\text{, 则}\forall \mu\text{介于}f'_+(a)\text{与}f'_-(b)\text{之间,} \exists \xi\epsilon(a,b)\text{,使得}f'(\xi)=\mu f+(a)=f(b) μ介于f+(a)f(b)之间,ξϵ(a,b),使得f(ξ)=μ
麦克劳林公式( x 0 = 0 x_0=0 x0=0时)

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}\\ f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+(n+1)!f(n+1)(ξ)xn+1f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

几个重要函数的麦克劳林展开式
e u = 1 + u + 1 2 u 2 + ⋯ + 1 n ! u n + o ( u n ) e^u=1+u+\frac{1}{2}u^2+\cdots+\frac{1}{n!}u^n+o(u^n) eu=1+u+21u2++n!1un+o(un)
s i n u = u − u 3 3 ! + ⋯ + ( − 1 ) n u 2 n + 1 ( 2 n + 1 ) ! + o ( u 2 n + 1 ) sinu=u-\frac{u^3}{3!}+\cdots+(-1)^n\frac{u^{2n+1}}{(2n+1)!}+o(u^{2n+1}) sinu=u3!u3++(1)n(2n+1)!u2n+1+o(u2n+1)
c o s u = u − u 2 2 ! + u 4 4 ! + ⋯ + ( − 1 ) n u 2 n ( 2 n ) ! + o ( u 2 n ) cosu=u-\frac{u^2}{2!}+\frac{u^4}{4!}+\cdots+(-1)^n\frac{u^{2n}}{(2n)!}+o(u^{2n}) cosu=u2!u2+4!u4++(1)n(2n)!u2n+o(u2n)
1 1 − u = 1 + u + u 2 + ⋯ + u n + o ( u n ) \frac{1}{1-u}=1+u+u^2+\cdots+u^n+o(u^n) 1u1=1+u+u2++un+o(un)
1 1 + u = 1 − u + u 2 − ⋯ + ( − 1 ) n u n + o ( u n ) \frac{1}{1+u}=1-u+u^2-\cdots+(-1)^nu^n+o(u^n) 1+u1=1u+u2+(1)nun+o(un)
l n ( 1 + u ) = u − u 2 2 + u 3 3 − ⋯ + ( − 1 ) n u n + 1 ( n + 1 ) + o ( u n + 1 ) ln(1+u)=u-\frac{u^2}{2}+\frac{u^3}{3}-\cdots+(-1)^n\frac{u^{n+1}}{(n+1)}+o(u^{n+1}) ln(1+u)=u2u2+3u3+(1)n(n+1)un+1+o(un+1)
( 1 + u ) α = 1 + α u + α ( α − 1 ) 2 ! u 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! u n + o ( u n ) (1+u)^\alpha=1+\alpha u+\frac{\alpha(\alpha-1)}{2!}u^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}u^n+o(u^n) (1+u)α=1+αu+2!α(α1)u2++n!α(α1)(αn+1)un+o(un)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值