《动态规划》— NYOJ 289 苹果

解决一个经典的动态规划问题——如何最大化背包中苹果的价值。给定不同大小和价值的苹果及背包容量,通过动态规划算法找到最优解。

苹果

时间限制:3000 ms  |  内存限制:65535 KB

难度:3

描述

ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。

 

输入

有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。

输出

对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。

样例输入

3 3
1 1
2 1
3 1
0 0

样例输出

2

来源

动态规划经典问题

上传者

ctest

 

#include<stdio.h>
#include<string.h>
#define max(a,b)   (a>b?a:b)

struct point {
	int c,w;
}a[1005];

int dp[1005][1005];
int main()
{
	int n,v;
	while(scanf("%d%d",&n,&v)&&n||v)
	{
		for(int i = 1; i <= n; i++)
		{
			scanf("%d%d",&a[i].c,&a[i].w);
		}
		memset(dp,0,sizeof(dp));
		for(int i = 1; i <= n; i++)
		{
			for(int j = 0; j <= v; j++)
			{
				if(a[i].c <= j)
				{
					dp[i][j] = max(dp[i-1][j],dp[i-1][j-a[i].c]+a[i].w);
				}
				else
				{
					dp[i][j] = dp[i-1][j];
				}
			}
		}
		printf("%d\n",dp[n][v]);
	}
}
#include<cstdio>  
#include<iostream>  
#include<cstring>  
using namespace std;  
#define max(a,b)  (a>b?a:b)  
struct point {  
    int c,w;  
}a[1005];  
int dp[1005];  
int main(){  
    int n,v;  
    while(scanf("%d%d",&n,&v)&&(n+v)){  
        for(int i=1;i<=n;i++)  
            scanf("%d%d",&a[i].c,&a[i].w);  
        memset(dp,0,sizeof(dp));  
        for(int i=1;i<=n;i++)  
            for(int j=v;j>=a[i].c;j--)  
               dp[j]=max(dp[j],dp[j-a[i].c]+a[i].w);  
        printf("%d\n",dp[v]);  
    }  
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值