最大似然估计

一、最大似然估计的基本原理:

   (1)由于样本是独立地从P(x|\theta )中抽取的,所以在概率密度为P(x|\theta )时获取样本集\varphi的概率即是出现在\varphi中的各个样本的联合概率: 

                                                l(\theta)=p(\varphi|\theta)=p(x_1,x_2,...,x_n|\theta)=\sum^{N}_{i=1} p(x_i|\theta)

这里,l(\theta)反映的是在不同参数取值下取得当前样本集的可能性。因此,称作参数\theta相对于样本集\varphi的似然函数。

   (2)最大似然估计的目的:我们要在参数空间\Gamma中找到一个值\theta(并且用值\hat{ \theta}来表示该估计值),它能使似然函数l(\theta)极大化。一般来说,使似然函数的值最大的\hat{ \theta}是样本x_1,x_2,...,x_n的函数,记为\hat{\theta}=d(x_1,x_2,...,x_n)。我们把\hat{\theta}=d(x_1,x_2,...,x_n)叫做\theta的最大似然估计量:\hat{\theta}=argmaxl(\theta)

   (3)最大似然估计的求解:

                                                       H(\theta)=lnl(\theta)=\sum^{N}_{i=1}lnp(x_i|\theta)

                                                                       \frac{H(\theta)}{d(\theta)}=0

        即对于\theta=[{\theta}_1,{\theta}_2,...,{\theta}_s]^T时,使得\bigtriangledown _{\theta}H(\theta)=0。这其中,\bigtriangledown _{\theta}=[\frac{\partial}{\partial\theta_1},\frac{\partial}{\partial\theta_2},...,\frac{\partial}{\partial\theta_s}]^T

二、均匀分布的最大似然估计:

   ①对于一维随机变量x服从均匀分布:

                                                         p(x|\theta)=\left\{\begin{matrix} \frac{1}{\theta_2-\theta_1} & \theta_1\leq x\leq \theta_2 \\ 0 & others \end{matrix}\right.

   ②则从总体分布中抽取N个样本x_1,x_2,...,x_N的似然函数为:

                                  l(\theta)=p(\varphi|\theta)= \left\{\begin{matrix} p(x_1,x_2,...,x_n|\theta_1,\theta_2)=\frac{1}{(\theta_2-\theta_1)^N} & \theta_1\leq x\leq \theta_2 \\ 0 & others \end{matrix}\right.

   ③对数似然函数为:

                                                               H(\theta)=-Nlnl(\theta_2-\theta_1)

   ④则有

                                                                \left\{\begin{matrix} \frac{\partial H}{\partial \theta_1}=N \cdot \frac{1}{(\theta_2-\theta_1)} & \\ \frac{\partial H}{\partial \theta_2}=-N \cdot \frac{1}{(\theta_2-\theta_1)} & \end{matrix}\right.

   ⑤从上述④式可以看出,必有\theta_1或者\theta_2为无穷大,但这是无意义的结果。则从原式p(x|\theta)可以看出,\theta_2-\theta_1越小时,似然函数越大。如果用x^'表示观察值中最小的一个,用x^''表示观察值中最大的一个,显然\theta_1\leq x^'\theta_2\geq x^''。因此,\theta_2-\theta_1的最小值只能是{x^''}-x^'

   ⑥此时\theta的最大似然估计量显然有:

                                                                   \hat{\theta}_1= {x^'},\hat{\theta}_2=x^''

三、正态分布下的似然估计:

① 单变量正态分布的形式表现为:

                                            p(x|\theta)=\frac{1}{\sqrt{2\pi }\sigma}e^{[-\frac{1}{2}(\frac{x-u}{\sigma})^2]}=\frac{1}{\sqrt{2\pi {\sigma}^2 }}e^{[-\frac{1}{2}(\frac{x-u}{\sigma})^2]}

这里,均值u和方差{\sigma }^2是未知数,即我们要估计的参数\theta=[u,{\sigma}^2]^T=[\theta_1,\theta_2]^T,用于估计的样本为\varphi=\{x_1,x_2,...,x_n\}

② 我们对①式进行对数化,可以得到:

                                                   lnp(x_k|\theta)=-\frac{1}{2}ln2\pi\theta_2-\frac{1}{2\theta_2}(x_k-\theta_1)^2

③ 分别对\theta_1\theta_2求导,则有:

                                            \bigtriangledown _{\theta_1}lnp(x_k|\theta)=-\frac{1}{2\theta_2}\cdot2(x_k-\theta_1)\cdot(-1)=\frac{x_k-\theta_1}{\theta_2}                                                 

                                  \bigtriangledown _{\theta_2}lnp(x_k|\theta)=-\frac{1}{2}\cdot\frac{2\pi}{2\pi\theta_2}-(x_k-\theta_1)^2\cdot\frac{1}{2}\cdot(-\frac{1}{\theta_2^2})=\frac{(x_k-\theta_1)^2-\theta_2}{2\theta_2^2}

④ 于是,最大似然估计应是以下方程组的解:

                                                            \left\{\begin{matrix} \sum^{K}_{k=1} \frac{x_k-\theta_1}{\theta_2}=0& \\ -\sum_{k=1}^{N}\frac{1}{\hat{\theta}_2}+\sum_{k=1}^{N}\frac{(x_k-\hat{\theta}_1)^2}{2\hat{\theta}_2^2}=0& \end{matrix}\right.

⑤ 因此,我们可以解得:

                                                           \left\{\begin{matrix} \hat{u}=\hat{\theta_1}=\frac{1}{N}\sum^{K}_{k=1}x_k& \\ {\hat{\sigma}^2}={\hat{\theta}_2}=\frac{1}{N}\sum_{k=1}^{N}{(x_k-\hat{u})^2}& \end{matrix}\right.

进一步可以得到:

                                                          \left\{\begin{matrix} \hat{u}=\frac{1}{N}\sum^{K}_{k=1}x_k& \\ {\hat{\sigma}^2}=\frac{1}{N}\sum_{k=1}^{N}{(x_k-\hat{u})}{(x_k-\hat{u})^T}& \end{matrix}\right.

  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值