最大似然估计的求解步骤(详细解释,通俗易懂)

       关于最大似然估计的定义我已经分享过啦,小伙伴们可以通过下面的链接看看

 什么是最大似然估计?

1.求解步骤

        今天我们来说一下它的求解步骤(这里的求解过程是以离散型随机变量为例,连续型随机变量同理)。

在上文中我们知道,离散型随机变量的似然函数为

L(\theta )=p(x_{1},x_{2},\cdot \cdot \cdot ,x_{n};\theta )=\prod ^{n}_{i=1}P(X_{i}=x_{i};\theta )

哦豁,单单看这个似然函数,后面是个连续乘积的形式,要求最大值的话那处理起来多麻烦,那我们肯定要想个办法呀,哎嘿,这里我们可以两边取自然对数,变成下面的形式

\ln L(\theta )=\ln p(x_{1},x_{2},\cdot \cdot \cdot ,x_{n};\theta )=\sum ^{n}_{i=1}P(X_{i}=x_{i};\theta )

你看,取完对数后,连乘变成了求和,这里有没有小伙伴们有疑问,那取完对数后求出来的最大值能和原来的一样嘛?这个其实是可以的啦,因为 \ln x 是 x 的单调上升函数,因此它俩有相同的最大值嘞~

        那取完对数只是第一步处理,第二步我们就可以开始求函数的最大值了,这个大家可以思考一下,求函数的极值?这好像高中就会吧?我们是不是求导就可以嘞?只不过我们这里面的未知参数可能不止一个,要对每一个未知参数求导,也就是所谓的求偏导,如下所示:

                                                   \frac{\partial \ln L(\theta) }{\partial \theta _{i}}=0i=1,\cdot \cdot \cdot ,n

这里 \theta _{i} 就是每一个未知参数哦,令这个方程等于0,然后就能求极值了呗,这用高中的知识就能写哦,不难的。

通过这个就能求得似然函数的最大值点,怎么样,其实挺简单的叭~

2.方法应用

        例1. X_{1},X_{2},\cdot \cdot \cdot ,X_{n}独立同分布,都服从泊松分布P(\lambda ),给定X_{1},X_{2},\cdot \cdot \cdot ,X_{n}的观测值x_{1},x_{2},\cdot \cdot \cdot ,x_{n},计算 \lambda 的最大似然估计。

        解:\lambda 的似然函数为

L(\lambda )=P(X_{1}=x_{1},X_{2}=x_{2},\cdot \cdot \cdot ,X_{n}=x_{n})

 =\frac{\lambda ^{x_{1}}}{x_{1}!}e^{-\lambda }\frac{\lambda ^{x_{2}}}{x_{2}!}e^{-\lambda }\cdot \cdot \cdot \frac{\lambda ^{x_{n}}}{x_{n}!}e^{-\lambda }

    =\frac{\lambda ^{\sum _{i=1}^{n}x_{i}}}{\prod _{i=1}^{n}x_{i}!}e^{-n\lambda }

        因为题上说了嘛,独立同分布,那它们联合的概率就等于每个分开的概率相乘,然后化简一下,就得到这个式子嘞。

        对数似然函数为

\ln L(\lambda )=\sum _{i=1}^{n}\ln \lambda -n\lambda -\sum _{i=1}^{n}(x_{i}!)

然后似然函数对 \lambda 求导

\frac{d\ln L(\lambda )}{d\lambda }=0

最后解得 \lambda 得最大似然估计为

\hat{\lambda }=\bar{x}=\frac{1}{n}\sum _{i=1}^{n}x_{i}

这里面因为是只有一个参数所以求导符号没用偏导符号,正常情况下多个参数是要用偏导符号的哦,是不是挺简单的呀,就像是一个函数求极值的过程呗,不要被一堆公式给吓到哦~

        我们这里说的都是有驻点的,有驻点的似然函数在驻点处求得最大似然估计,无驻点的,则在参数的边界点上取到。什么叫做边界点?哎意思就是参数的那个范围嘛,在区间的两端那个点嘞,似然函数是单调递增的,那就取范围内的最大点,单调递减的取范围内的最小点,反正就一个宗旨:取似然函数的最大值。

怎么样,不难叭,好嘞,这篇就到这里啦,有错误的地方欢迎小伙伴们批评指正~(知识来自何书元版数理统计)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦云澜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值