GMM(高斯混合模型主要用于聚类)
(1)某样本点
在GMM上的概率为:

其中,GMM由K个单GM构成:
表示第k个GM的权重;
为该样本在第k个GM(其均值为
,方差为
)的概率。
则所有的N个样本点在GMM上的概率为:
![P(X)=P(x_1,x_2,...x_N)=\prod_{i=1}^{N}P(x_i)=\prod_{i=1}^{N}\left [ \sum_{k=1}^{K}\pi_kP(x_i|k) \right ]](https://i-blog.csdnimg.cn/blog_migrate/d0593c516ce0acddf41c0a264f02cccf.gif)
采用对数形式,则得到其似然函数:
![logP(X)=log\prod_{i=1}^{N}\left [ \sum_{k=1}^{K}\pi_kP(x_i|k) \right ]=\sum_{i=1}^{N}log\left [ \sum_{k=1}^{K}\pi_kP(x_i|k) \right ]](https://i-blog.csdnimg.cn/blog_migrate/2c35d3f0298e0ce795f1f00b4e21b71d.gif)
我们的目标是:最大化logP(X),使所有样本在高斯混合模型GMM上的概率最大。其中,
又可以表示为
。
(2) 第i个样本
由第k个GM模型生成的概率为:

其中,分子表示样本
由第k个模型生成的概率,分母表示样本
由所有模型生成的概率。
(3) 第k个GM模型的均值,由在该模型上的所有样本数据共同决定:

同理,我们可以得到:


(4)我们将(3)中求得的
代入logP(X),考察是否与上一轮参数构成的logP(X)相收敛(即差值小于一定的阈值);若不收敛,则继续进行(2)(3)步进行迭代操作,直至收敛。当logP(x)收敛时:对于样本
,在(2)中计算出它在各GM中的生成概率,则该样本服从最大生成概率的那个GM。
注:初始时的
,可以对
进行随机赋值得到。
参考:
http://www.cnblogs.com/CBDoctor/archive/2011/11/06/2236286.html

本文详细介绍了高斯混合模型(GMM)的基本原理及应用,包括如何计算样本点在GMM上的概率、如何更新模型参数以实现聚类效果最优化,并通过迭代过程确保模型收敛。
原理&spm=1001.2101.3001.5002&articleId=72977288&d=1&t=3&u=a5ec4762d6d14d0fb429483c6120617c)
2170

被折叠的 条评论
为什么被折叠?



