GMM高斯混合模型

GMM高斯混合模型

一、GMM简介

GMM 全称是高斯混合模型,顾名思义,其本质就是将n个高斯模型混合叠加在一起,主要用处是用来作异常检测,聚类等;优点就是可解释性好,在低维数据上有着不错的效果;
常见的异常检测算法,例如:KNN,Kmeans,通常在低维数据上有不错的效果,在高维数据上的表现就不是很好,原因如下:
1、传统方法对高维数据的处理分两步,先将高维数据降维到低维上面,再在低维数据上面作密度估计;
2、但高维数据降维之后,不容易保留足够多的关键信息;而且,降维后和密度估计是独立的,这样很容易陷入局部最优的境地,因为两部是相互独立的,所以不容易知道该保留哪些密度估计所要的关键信息;

二、GMM原理

1、GMM模型

每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:
GMM概率密度函数
根据如上的公式,如果我们从GMM中取一个点的话,可以分为两步;1:先随机选一个component,component被选中的概率为p;2、选中之后再考虑从这个component中选取一个点,这就是回到gaussian的问题了;

2、求解GMM模型

求解GMM模型,其实本质就是求解每个compoment的概率P,以及gaussian分布中的各类均值Pmiu,和各类协方差Psigma(k)这些参数。
可以这么来思考,假设找到一组参数,它所确定的概率分布生成的这些给定的数据点的概率最大,为,这个乘积称作似然函数(Likelihood Function)。通常单个点的概率很小,因此会取其对数,把乘积变为,接下来只需要将这个函数最大化(通常是求导数,然后令导数为0),即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

GMM的log-likelihood-function:

由于在对数函数里又有加和,我们没法直接求导解方程来直接求得最大值,为了解决这个问题我们分两步走,即EM算法;

三、求解过程

(1)估计数据由每个component生成的概率:对于每个数据Xi来说,它是由第k个component生成的概率为:

其中,N(xi | μk,Σk)就是
这就是EM算法中的E步,即确定Q函数,

2、确定EM算法中的M步
迭代的M步时求函数Q对theta的极大值,即通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值,

其中,
重复以上计算,知道对数似然函数值不再由明显的变化为止

最后的loss函数各参数估计计算如下:
在这里插入图片描述

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值