ComfyUI新手使用教程

一、安装与配置

1. 安装步骤
  • Windows系统

    1. 下载秋叶整合包(推荐新手使用),解压至本地目录。
    2. 运行启动器(如A绘图启动器.exe),设置语言和模型路径。
    3. 将模型文件(如.safetensors.ckpt)放入ComfyUI/models/checkpoints目录。
    4. 双击run_nvidia_gpu.bat启动(NVIDIA显卡)或run_cpu.bat(仅CPU)。
  • Mac系统

    1. 通过终端安装Homebrew和依赖库(如Python 3.10、Git等)。
    2. 克隆ComfyUI仓库并安装依赖:git clone https://github.com/comfyanonymous/ComfyUI.gitpip install -r requirements.txt
    3. 将模型文件放入对应目录,运行python main.py启动。
2. 共享模型(与WebUI共用)
  • 修改extra_model_paths.yaml文件,将base_path指向WebUI的安装目录,重启ComfyUI即可共享模型文件。
3. 汉化设置
  • 在界面左下角设置中选择“中文”语言选项,无需额外插件。

二、界面与基础操作

1. 核心节点功能
  • 加载检查点(Load Checkpoint):选择大模型,输出模型(MODEL)、CLIP(文本编码器)和VAE(图像解码器)。
  • CLIP文本编码器:输入正向和负向提示词,支持权重语法(如(关键词:1.2))。
  • 空白潜空间图像(Empty Latent Image):设置生成图像的尺寸和批量数量。
  • KSampler:核心采样节点,控制种子(Seed)、步数(Steps)、采样器等参数。
2. 基础工作流(文生图)
  1. 连接节点:Load CheckpointCLIP文本编码器KSamplerVAE解码保存图像
  2. 输入提示词,点击“队列提示”生成图像。首次生成时建议使用默认参数(步数20,CFG 7)。
3. 快捷键与界面优化
  • 常用快捷键Ctrl+0显示队列面板,Ctrl+G编组节点,Alt+C折叠节点。
  • 界面布局:新版界面支持工作流管理、图像队列平铺展示,以及节点库的模糊搜索。

三、进阶技巧与插件

1. 图生图工作流
  • 添加“加载图像”节点,将图像输入至VAE编码器生成潜空间图像,再连接至KSampler调整去噪强度(如0.6-0.8)。
2. 插件安装(以ComfyUI Manager为例)
  • Windows:在custom_nodes目录下运行git clone https://github.com/ltdrdata/ComfyUI-Manager,重启后通过管理器安装其他插件。
  • 必装插件推荐:汉化插件、工作流管理器、资源监控工具。
3. 多模型与LoRA应用
  • 使用多个“加载检查点”节点比较不同模型效果;通过LoRA节点注入风格参数,调整生成细节。

四、常见问题与优化

1. 性能问题
  • 显存不足:启用--lowvram模式或使用优化节点(如分块生成)。
  • 速度慢:推荐使用NVIDIA RTX 30/40系列显卡,显存≥8GB。
2. 故障排查
  • 模型加载失败:检查模型路径和文件格式(需.safetensors.ckpt)。
  • 节点连接错误:确保连线颜色一致(如橙色CLIP输出只能连橙色输入)。
3. 更新与维护
  • 通过ComfyUI Manager一键更新核心和插件,或手动运行git pull

五、学习资源推荐

  1. 官方文档:查看节点说明和快捷键列表(链接)。
  2. 社区模板:在Civitai或HuggingFace下载预设工作流文件(.json),直接导入复用。

通过以上步骤,新手可快速掌握ComfyUI的核心功能。如需深入探索复杂工作流(如动画生成或高分辨率修复),建议参考进阶教程或社区案例。

### ComfyUI 使用教程 #### 官方文档概述 ComfyUI是一款用于稳定扩散模型的图形化界面工具,其设计目的是让用户通过拖拽节点的方式轻松创建复杂的AI图像生成流水线。对于初次接触该软件的新手来说,理解如何安装以及基本操作至关重要[^2]。 #### 安装指南 为了开始使用ComfyUI, 需要先完成环境搭建。如果之前已经在本地机器上运行过其他版本Web UI,则可以通过简单的配置调整使两者共享相同的模型库而不互相影响。具体做法是在设置选项里指定ComfyUI使用的模型存储位置指向已有的Web UI目录下相应文件夹即可实现资源共享。 #### 基本概念介绍 在熟悉了上述准备工作之后,下一步就是学习一些核心术语和组件的功能: - **Node(节点)**: 这是构成整个处理链路的基本单元,在这里可以执行诸如加载图片、应用滤镜等各种任务; - **Edge(边)**: 节点之间传递数据流的连接线,定义了各个模块之间的输入输出关系; - **Workflow(工作流)**: 整体由多个相互关联的节点组成的一个完整的计算过程描述图; #### 实际案例分析 假设想要利用预训练好的Stable Diffusion模型来生成一张特定风格的艺术画作,那么可以在界面上依次添加如下几个关键节点并建立好它们间的联系: 1. `Load Image` - 导入作为参考的基础照片或草稿; 2. `CLIPTextEncode` 和 `VAEEncode` - 对文本提示词及视觉内容分别编码转换为向量表示形式; 3. `KSampler` 或者类似的采样器节点 - 应用随机噪声扰动机制模拟创作灵感涌现的过程; 4. `VAEDecode` - 将最终得到的结果解码还原成可视化的图像格式保存下来。 ```python from comfyui import workflow wf = workflow.Workflow() load_image_node = wf.add_node('LoadImage', {'path': 'input.jpg'}) clip_text_encode_node = wf.add_node('CLIPTextEncode', {'text': "A beautiful sunset"}) vae_encode_node = wf.add_node('VAEEncode', inputs=[load_image_node]) ksampler_node = wf.add_node('KSampler', inputs=[clip_text_encode_node, vae_encode_node]) vae_decode_node = wf.add_node('VAEDecode', inputs=[ksampler_node], outputs=['output.png']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值