论文标题 | Coordinate attention for efficient mobile network design |
---|---|
论文作者 | Qibin Hou, Daquan Zhou, Jiashi Feng |
发表日期 | 2021年03月01日 |
GB引用 | > Qibin Hou, Daquan Zhou, Jiashi Feng. Coordinate Attention for Efficient Mobile Network Design[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021, abs/2103.02907: 13708-13717. |
DOI | 10.1109/CVPR46437.2021.01350 |
论文地址:https://ieeexplore.ieee.org/document/9577301
摘要
本文提出了一种名为“坐标注意力”(Coordinate Attention, CA)的新颖轻量级注意力机制,用于移动网络设计。传统通道注意力仅关注通道间关系而忽略位置信息,而CA通过嵌入位置信息扩展了通道注意力,在两个空间方向上分别进行一维特征编码,从而捕获长距离依赖并保留精确的位置信息。实验表明,CA不仅在ImageNet分类任务中表现优异,还能显著提升下游任务如目标检测和语义分割的表现。CA模块易于集成到经典移动网络架构中,且计算开销极小,适用于多种模型规模和权重倍率设置。在多个基准数据集上的测试显示,CA优于现有轻量级注意力方法,特别是在密集预测任务中效果更为突出。
全文摘要
论文标题为《用于高效移动网络设计的坐标注意力》。该研究探讨了一种新颖的注意力机制——坐标注意力,以提高移动网络的性能。
主题概述
在深度学习领域,注意力机制广泛应用于提升模型性能,尤其是在计算机视觉任务中。尽管已有的注意力机制(如Squeeze-and-Excitation注意力)在提升模型精度上表现出色,但它们往往忽视了空间位置信息,这对生成具有空间选择性的注意力图非常重要。本论文的核心在于提出了一种结合通道注意与位置信息的新机制,以增强移动网络对对象的注意力。
主要结论
- 坐标注意力机制:作者通过将通道注意力划分为两个一维特征编码过程,分别在垂直和水平方向上聚合特征,从而有效捕捉长程依赖关系并保持精准的位置信息。
- 综合性能提升:在ImageNet分类、目标检测和语义分割等下游任务中,坐标注意力机制显示出显著的性能提升,尤其是在需要密集预测的任务中表现更为突出。
- 无显著计算开销:该机制简单易于集成到经典移动网络架构(如MobileNetV2、MobileNeXt和EfficientNet)中,几乎没有计算开销。
- 实验验证:通过大量实验,证明坐标注意力在多个标准数据集上表现优于传统的注意力机制(如SE注意力和CBAM),在基于轻量级模型的应用中拥有更强的可迁移性。
独特之处
坐标注意力机制的关键创新在于结合了通道关系与空间坐标信息,能够帮助模型更准确地定位关键信息,从而提升整体识别能力。与现有方法相比,结合了长距离依赖和位置信息的这一设计使其在进行视觉任务时展现出更高的鲁棒性和有效性。
总的来说,这篇论文为移动网络设计提供了一种有效的注意力机制,具有很大的应用潜力,并为后续的研究提供了新的方向。
研究问题
- 如何在不显著增加计算开销的情况下,将位置信息有效嵌入到通道注意力机制中以提升移动网络的性能?
- 坐标注意力机制是否能更准确地捕捉长距离依赖关系并保留精确的位置信息,从而提高模型对感兴趣对象的定位和识别能力?
- 相较于现有的轻量级注意力方法(如SE注意力和CBAM),坐标注意力机制在ImageNet分类任务中的表现是否有显著提升,并且在下游任务如目标检测和语义分割中是否同样表现出色?
- 不同的降维比例对坐标注意力机制的性能有何影响,是否存在最佳的降维比例?
- 坐标注意力机制在更强大的移动网络架构(如EfficientNet-b0)中是否仍然能够保持其有效性并带来性能提升?
研究方法
实验研究: 提出了一种新的轻量级注意力机制(Coordinate Attention),通过在MobileNetV2和MobileNeXt等经典轻量级网络架构中插入所提出的注意力模块,验证了其在ImageNet分类、目标检测和语义分割任务中的有效性。
比较研究: 通过与现有的轻量级注意力机制(如SE注意力和CBAM)对比,在相同的参数数量和计算开销下,证明了所提出的Coordinate Attention在ImageNet分类、COCO目标检测和Pascal VOC语义分割任务上的优越性能。
混合方法研究: 结合了通道间关系建模与空间位置信息编码的方法,将全局池化分解为两个一维特征编码过程,同时捕捉长距离依赖关系和精确的空间位置信息,实现了通道注意力与坐标感知注意力的有机结合。
系统分析: 对Coordinate Attention模块的不同组成部分进行了详细的消融实验,分析了水平注意力、垂直注意力以及减少比率r等因素对模型性能的影响,并通过可视化工具展示了其在定位感兴趣对象方面的优势。
研究思路
该论文的研究思路主要聚焦于提高移动网络中的注意力机制效率,通过提出一种新颖的注意力机制——坐标注意力(Coordinate Attention)来整合通道信息和位置信息,以增强模型在视觉任务中的表现。
理论框架或模型
论文的理论框架基于当前流行的注意力机制,特别是通道注意力机制(如Squeeze-and-Excitation注意力)和空间注意力机制(如CBAM)。传统的通道注意力往往通过2D全局池化将特征张量转换为单一特征向量,这在很大程度上忽略了位置信息。相较之下,坐标注意力通过将通道注意力分解为两个一维特征编码过程,分别沿水平和垂直方向聚合特征,从而有效捕捉长距离依赖关系,同时保留精确的位置信息。这样,其生成的特征图能够更好地反映物体的空间结构。
研究方法
具体的方法和技术路线主要包括以下几个步骤:
- 特征编码:输入特征张量通过两个一维全局池化操作分别沿水平和垂直方向进行特征聚合,从而生成两个方向感知的特征图。这种处理方法有助于在一个方向上捕捉长距离依赖,而在另一个方向上保留位置信息。
- 坐标注意力生成:将上述生成的两个特征图串联并通过共享的1×1卷积转换,生成综合性的特征图。随后,将其划分为两个张量,并分别经过额外的卷积处理来生成最终的注意力权重,这些权重反映了特征图中不同位置的物体重要性。最后,通过逐通道相乘的方式将注意力权重与输入特征图相结合,从而突出重要的表示。
Coordinate Attention
一个坐标注意力块可以被视为一种计算单元,旨在增强移动网络中学习到的特征的表现力。它可以采用任何中间特征张量 X = [ x 1 , x 2 , … , x C ] ∈ R C × H × W \mathbf{X}=[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_C]\in\mathbb{R}^{C\times H\times W} X=[x1,x2,…,xC]∈RC×H×W 作为输入,并输出一个与 X \mathbf{X} X 相同大小的增强表示 Y = [ y 1 , y 2 , … , y C ] \mathbf{Y}=[\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_C] Y=[y1,y2,…,yC] 的转换张量。为了清楚地描述所提出的坐标注意力机制,我们首先回顾了在移动网络中广泛使用的 SE 注意力。
正如在[18]中所展示的,标准卷积本身很难建模通道关系。明确构建通道间的相互依赖性可以增加模型对最终分类决策贡献更多的信息通道的敏感性。此外,使用全局平均池化还可以帮助模型捕获全局信息,这是卷积所缺乏的。
从结构上讲,SE 模块可以分解为两个步骤:挤压和激励,分别用于全局信息嵌入和通道关系的自适应校准。给定输入 X,第 c 个通道的挤压步骤可表示如下:
z c = 1 H × W ∑ i = 1 H ∑ j = 1 W x c ( i , j ) , ( 1 ) z_c=\frac{1}{H\times W}\sum_{i=1}^{H}\sum_{j=1}^{W}x_c(i,j),\quad(1) zc=H×W