如何创建Facebook的类似受众

本文介绍了如何创建Facebook的类似受众,这是一种利用现有自定义受众的特征找到相似新用户的方法。创建类似受众涉及选择百分比范围、关注优质客户、确保源受众数量足够,并限制在特定广告组地区。此外,源受众会被排除在类似受众之外,同时一个广告组可使用多组类似受众。注意,针对青少年的广告定位受到特定限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们要明白什么是类似受众?
官方解释:类似受众使用您选择的现有自定义受众作为其源受众。要创建类似受众,我们的系统会利用您的源受众中的人口统计数据、兴趣和行为等信息来寻找具有相似特质的新用户。当您使用类似受众时,您的广告将面向与您的现有客户相似(或“类似”)的受众进行投放。
 

以一个花痴的角度来说:就是你的男神是彭于晏,英俊潇洒,热爱运动,于是乎你天天在各种社交软件刷他的相关消息。大数据get到你的喜好后,首先会经常给你主动推送彭于晏的消息外,也会顺带给你推荐一些和彭于晏相同类型的帅哥~~(个人拙见,有错必改~)

那刚刚的花痴角度是从使用者的方向来看,从创建类似受众的角度来看:我们就需要搜集之前和我们广告进行过各种形形色色交集的人群,然后进行筛选,再把筛选出来的数据进行统计,做成类似受众目标。

1、创建类似受众,可以使用百分比范围来选择您希望新受众与源受众的接近程度。百分比数字越小,表示与您的源受众匹配程度越接近;而百分比数字越大,则表示创建的受众范围越大、越宽泛。(建议最少是6%,一般是3%—4%)


2、需要关注优质客户,质大于量。


3、您需要具有现有源受众,才能创建类似受众。(创建类似受众的话,一般是需要我们的广告运行了一段时间,有客户的积

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值