docker: Error response from daemon: could not select device driver ““ with capabilities: [[gpu]].

docker报错

docker run --gpus all hello-world nvidia-smi
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].

这个错误表明 NVIDIA Container Runtime 没有正确配置。让我们逐步解决:

首先检查 NVIDIA 驱动是否正常:

# 检查 NVIDIA 驱动
nvidia-smi

# 检查 NVIDIA Container Runtime 是否安装
which nvidia-container-runtime

重新配置 NVIDIA Container Runtime:

# 配置 Docker 默认运行时
sudo nvidia-ctk runtime configure --runtime=docker

# 或者手动编辑 Docker daemon 配置
sudo nano /etc/docker/daemon.json

# 确保包含以下配置
{
    "data-root": "/data/app/docker",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    },
    "default-runtime": "nvidia"
}

重启 Docker 服务:

sudo systemctl restart docker

使用正确的测试镜像:

# hello-world 镜像不包含 nvidia-smi,应该使用 NVIDIA 的基础镜像
docker run --gpus all nvidia/cuda:11.8.0-base-ubuntu22.04 nvidia-smi

如果还有问题,检查完整安装:

# 重新安装 NVIDIA Container Toolkit
sudo apt-get install -y nvidia-container-toolkit nvidia-container-runtime

# 验证安装
dpkg -l | grep -i nvidia

# 检查 Docker 信息
docker info | grep -i runtime

如果以上步骤执行后仍有问题,请运行以下命令查看详细错误信息:

# 检查 Docker 日志
sudo journalctl -fu docker

# 检查 NVIDIA Container Runtime 版本
nvidia-container-runtime --version

# 检查 Docker 运行时配置
sudo cat /etc/docker/daemon.json
### 解决 CentOS 上 Docker 设备驱动选择错误的问题 当遇到 `docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]]` 错误时,这通常意味着 Docker 容器无法找到合适的 GPU 驱动程序来满足请求中的能力需求[^1]。 #### 一、确认 NVIDIA 驱动安装情况 确保主机已经正确安装了适用于 CUDA 的 NVIDIA 显卡驱动。可以通过命令 `nvidia-smi` 来验证这一点;如果该命令返回有关 GPU 使用状态的信息,则说明驱动已成功安装并配置好环境变量路径[^2]。 #### 二、设置必要的内核模块加载选项 对于某些 Linux 发行版来说,在启动过程中可能不会自动加载所需的 nvidia 模块。编辑 `/etc/modules-load.d/nvidia.conf` 文件并向其中添加如下内容: ```bash nvidia nvidia_uvm nvidia_modeset ``` 之后重启计算机使更改生效。 #### 三、安装 Nvidia Container Toolkit 为了使得容器能够访问到宿主机上的GPU资源,需要额外安装NVIDIA提供的官方工具包——NVIDIA Container Toolkit: ```bash distribution=$(. /etc/os-release;echo $VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo yum install -y nvidia-container-toolkit sudo systemctl restart docker ``` 注意上述脚本针对的是基于Debian/Ubuntu系统的操作指南,请根据实际使用的Linux发行版本调整相应的软件源地址以及包管理器指令。 #### 四、运行带有 GPU 支持的 Docker 容器 完成以上准备工作后就可以尝试再次拉取支持CUDA加速计算功能镜像,并指定相应参数让其可以正常使用GPU硬件设施了。例如使用Theano框架进行科学运算时可参照下面的方式执行: ```bash sudo docker pull kaixhin/cuda-theano:latest sudo docker run --gpus all -it kaixhin/cuda-theano:latest bash ``` 这里通过`--gpus all` 参数告诉Docker守护进程允许当前会话内的应用程序调用所有的可用图形处理器单元来进行密集型任务处理工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值