kinect指尖识别 来源: 张维祥的日志 对于普通摄像头下的手指识别,大多是基于模板匹配,神经网络和统计分析甚至于借助颜色指套等进行,但因为环境干扰太多,识别效果不好,而且大多只能识别手整体的运动,而不能识别手指的运动。本文是基于kinect摄像头实现的,由于它支持深度图像,可以排除复杂的背景,而且支持例如openNI和win SDK中的骨骼识别,因此较易获取手掌位置。无法将代码贴出,见谅。算法主要基于opencv实现。识别大体步骤如下: 1.获得深度图像 2.通过nite等算法获取掌心位置 3.通过深度等策略判断获取手掌区域,排除干扰,对该区域进行处理 4.利用图像细化算法结合形态学开闭运算可去除手指,保留手掌 5。通过获取图像运算可获得细化的手指(见上) 6.结合canny和平滑运算,hough变换(PPHT算法),获取手指坐标。 7.经过结果筛选处理可得到最终结果。 因为最后只是对几个线段进行运算,速度很快,所以实时效果很好。