Flume+Kafka+Spark搭建与案例实操

本文档详细介绍了Flume、Kafka和Spark的单机及分布式环境搭建,包括Flume的Agent组件、Kafka的环境配置、Spark的Shell操作和词频统计应用。通过Flume收集数据,Kafka作为中间件,Spark进行实时流处理,构建大数据处理流水线。文中还提供了配置文件示例、命令操作和错误排查方法。
摘要由CSDN通过智能技术生成

大数据开发文档

本文档主要讲述了flume+kafka+spark的单机分布式搭建,由浅入深,介绍了常见大数据流处理流程

单机版环境搭建及相关DEMO

Flume

Flume基本介绍与架构

Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。

Flume出生日记

有很多的服务和系统

  • network devices
  • operating system
  • web servers
  • Applications

这些系统都会产生很多的日志,那么把这些日志拿出来,用来分析时非常有用的。

如何解决数据从其他的server上移动到Hadoop上?

shell cp hadoop集群上的机器上, hadoop fs -put …/ 直接拷贝日志,但是没办法监控,而cp的时效性也不好,容错负载均衡也没办法做

======>

Flume诞生了

Flume架构

Flume组成架构如图1-1,所示:

在这里插入图片描述
​ 图1-1 Flume组成架构

Agent

Agent是一个JVM进程,它以事件的形式将数据从源头送至目的,是Flume数据传输的基本单元。

Agent主要有3个部分组成,Source、Channel、Sink。

Source

Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。

Channel

Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。

Flume自带两种Channel:Memory ChannelFile Channel

Memory Channel是内存中的队列。Memory Channel在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。

File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。

Sink

Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。

Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。

Event

传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。

Flume拓扑结构

Flume的拓扑结构如图1-3、1-4、1-5和1-6所示:

在这里插入图片描述

​ 图1-3 Flume Agent连接

在这里插入图片描述

​ 图1-4 单source,多channel、sink

在这里插入图片描述

​ 图1-5 Flume负载均衡

在这里插入图片描述

​ 图1-6 Flume Agent聚合

Flume安装部署

Flume的安装相对简单,但是前提是要先下好Java环境JDK,1.8以上即可,JDK安装可以查看Kafka安装流程,这里以Linux下的安装为例

Flume安装地址

安装部署

  1. 解压apache-flume-1.7.0-bin.tar.gz到/usr/local/目录下(安装包详见安装包文件夹flume文件夹下的tar.gz压缩包)
#把下载的包移动到目录
$ sudo mv apache-flume-1.7.0-bin.tar.gz /usr/local
#解压
$ sudo tar -zxvf apache-flume-1.7.0-bin.tar.gz  /usr/local/
  1. 修改apache-flume-1.7.0-bin的名称为flume
$ sudo mv apache-flume-1.7.0-bin flume
  1. 将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件
$ mv flume-env.sh.template flume-env.sh

$ vi flume-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_144(这里路径替换为本机JDK安装目录)

案例实操
  • 监控端口数据

    • 案例需求:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。

    • 需求分析

在这里插入图片描述

  • 实现步骤:

    • 安装telnet工具

      在/usr/local目录下创建flume-telnet文件夹。

      $ mkdir flume-telnet
      

      再将rpm软件包(xinetd-2.3.14-40.el6.x86_64.rpm、telnet-0.17-48.el6.x86_64.rpm和telnet-server-0.17-48.el6.x86_64.rpm)拷入/usr/local/flume-telnet文件夹下面。执行RPM软件包安装命令:

      $ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm
      
      $ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm
      
      $ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm
      
      
  • 判断44444端口是否被占用

    判断44444端口是否占用,如果被占用则kill掉或者更换端口

    $ sudo netstat -tunlp | grep 44444
    功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。
    
    基本语法:netstat [选项]
    
    选项参数:
    
    -t或--tcp:显示TCP传输协议的连线状况; 
    
    -u或--udp:显示UDP传输协议的连线状况;
    
           -n或--numeric:直接使用ip地址,而不通过域名服务器; 
    
           -l或--listening:显示监控中的服务器的Socket; 
    
           -p或--programs:显示正在使用Socket的程序识别码和程序名称;
    
    
  • 创建Flume Agent配置文件flume-telnet-logger.conf

    在flume目录下创建job文件夹并进入job文件夹

    $ mkdir job
    $ cd job/	
    
  • 在job文件夹下创建Flume Agent配置文件flume-telnet-logger.conf

    $ touch flume-telnet-logger.conf
    # 如果觉得vim上手难度太大,可以使用gedit来进行编辑
    $ vim flume-telnet-logger.conf
    # 在conf文件中加入以下内容
    
    # Name the components on this agent
    
    a1.sources = r1
    
    a1.sinks = k1
    
    a1.channels = c1
    
     
    
    # Describe/configure the source
    
    a1.sources.r1.type = netcat
    
    a1.sources.r1.bind = localhost
    
    a1.sources.r1.port = 44444
    
     
    
    # Describe the sink
    
    a1.sinks.k1.type = logger
    
     
    
    # Use a channel which buffers events in memory
    
    a1.channels.c1.type = memory
    
    a1.channels.c1.capacity = 1000
    
    a1.channels.c1.transactionCapacity = 100
    
     
    
    # Bind the source and sink to the channel
    
    a1.sources.r1.channels = c1
    
    a1.sinks.k1.channel = c1
    

注:配置文件来源于官方手册

在这里插入图片描述

  • 先开启flume监听端口

    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console
    
    参数说明:
    
           --conf conf/  :表示配置文件存储在conf/目录
    
           --name a1       :表示给agent起名为a1
    
           --conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。
    
           -Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。
    
  • 使用telnet工具向本机的44444端口发送内容

    $ telnet localhost 44444
    
  • 将A服务器上的日志实时采集到B服务器

    一般跨节点都是使用avro sink

    技术选型有两种方案:

    • exec source + memory channel + avro sink

      // Flume的关键就是写配置文件,仍然是在conf文件夹下创建配置文件
      // avro-memory-sink.conf
      
      # Name the components on this agent
      exec-memory-avro.sources = exec-source
      exec-memory-avro.sinks = arvo-sink
      exec-memory-avro.channels = memory-channel
      
      # Describe/configure the source
      exec-memory-avro.sources.exec-source.type = exec
      exec-memory-avro.sources.exec-source.command = tail -F $FLUME_HOME/logs/flume.log
      exec-memory-avro.sources.exec-source.shell = /bin/sh -c
      
      # Describe the sink
      exec-memory-avro.sinks.arvo-sink.type = avro
      exec-memory-avro.sinks.arvo-sink.hostname = localhost
      exec-memory-avro.sinks.arvo-sink.port = 44444
      
      # Use a channel which buffers events in memory
      exec-memory-avro.channels.memory-channel.type = memory
      exec-memory-avro.channels.memory-channel.capacity = 1000
      exec-memory-avro.channels.memory-channel.transactionCapacity = 100
      
      # Bind the source and sink to the channel
      exec-memory-avro.sources.exec-source.channels = memory-channel
      exec-memory-avro.sinks.arvo-sink.channel = memory-channel
      
    • avro source + memory channel + logger sink

      // avro-logger-sink.conf
      # Name the components on this agent
      avro-memory-logger.sources = avro-source
      avro-memory-logger.sinks = logger-sink
      avro-memory-logger.channels = memory-channel
      
      # Describe/configure the source
      avro-memory-logger.sources.avro-source.type = avro
      avro-memory-logger.sources.avro-source.bind = localhost
      avro-memory-logger.sources.avro-source.port = 44444
      
      # Describe the sink
      avro-memory-logger.sinks.logger-sink.type = logger
      
      # Use a channel which buffers events in memory
      avro-memory-logger.channels.memory-channel.type = memory
      avro-memory-logger.channels.memory-channel.capacity = 1000
      avro-memory-logger.channels.memory-channel.transactionCapacity = 100
      
      # Bind the source and sink to the channel
      avro-memory-logger.sources.avro-source.channels = memory-channel
      avro-memory-logger.sinks.logger-sink.channel = memory-channel
      

    接下来启动两个配置

    先启动avro-memory-logger
    
    flume-ng agent \
    
    --name avro-memory-logger \
    
    --conf $FLUME_HOME/conf \
    
    --conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
    
    -Dflume.root.logger=INFO,console
    
    再启动另外一个
    
    flume-ng agent --name exec-memory-avro 
    
    --conf $FLUME_HOME/conf \
    
    --conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
    
    -Dflume.root.logger=INFO,console
    
    

在这里插入图片描述

在这里插入图片描述

一个可能因为手误出现的bug

log4j:WARN No appenders could be found for logger (org.apache.flume.lifecycle.LifecycleSupervisor).
log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

出现这个错误是因为路径没有写对

往监听的日志中输入一段字符串,可以看到我们的logger sink 已经成功接收到信息

在这里插入图片描述

上面Flume的基本流程图如下

在这里插入图片描述


Kafka

Kafka是由Apache软件基金会开发的一个开源流处理平台,由ScalaJava编写。该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,[3]这使它作为企业级基础设施来处理流式数据非常有价值。此外,Kafka可以通过Kafka Connect连接到外部系统(用于数据输入/输出),并提供了Kafka Streams——一个Java流式处理

具体的架构可以查看官网的intro部分

因为在实际编程中使用kafka_2.11-0.11.00以上版本和使用以下版本的Java API 不一致,所以推荐直接参照官网的文档进行编程。

环境搭建

单机单节点

搭建说明

需要有一定的Linux操作经验,对于没有权限之类的问题要懂得通过命令解决

Kafka的安装相比Flume来说更加复杂,因为Kafka依赖于Zookeeper

环境说明:

  • os:Ubuntu 18.04
  • zookeeper:zookeeper 3.4.9
  • kafka:kafka_2.11-0.11.0.0
  • jdk:jdk 8(kafka启动需要使用到jdk)

详细说明:

一、jdk安装

jdk分为以下几种:jre、openjdk、 oracle jdk,这里我们要安装的是oracle jdk(推荐安装)

add-apt-repository ppa:webupd8team/java
apt-get update
apt-get install oracle-java8-installer
apt-get install oracle-java8-set-default

测试安装版本:

img

二、安装配置zookeeper单机模式

下载zookeeper 3.4.5,开始安装(软件包详见软件包下的kafka中的压缩包):

cd /usr/local
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz

img

等待安装成功:

img

解压:

tar -zxvf zookeeper-3.4.5.tar.gz

解压后同目录下便存在相同文件夹:

img

切换到conf目录下:

cd zookeeper-3.4.5/conf/

img

复制zoo_sample.cfg到zoo.cfg:

cp zoo_sample.cfg zoo.cfg

然后编辑zoo.cfg如下(其它不用管,默认即可):

initLimit=10
syncLimit=5
dataDir=/home/young/zookeeper/data
clientPort=2181

img

别忘了新建dataDir目录:

mkdir /home/young/zookeeper/data

为zookeeper创建环境变量,打开/etc/profile文件,并在最末尾添加如下内容:

vi /etc/profile

添加内容如下:

export ZOOKEEPER_HOME=/home/young/zookeeper
export PATH=.:$ZOOKEEPER_HOME/bin:$JAVA_HOME/bin:$PATH

img

配置完成之后,切换到zookeeper/bin目录下,启动服务:

img

关闭服务:

img

这里暂时先关闭zookeeper服务,防止下面使用kafka启动时报端口占用错误。

三、安装配置kafka单机模式

下载kafka(安装包详见软件包kafka下的压缩包):

cd /usr/local
wget https://www.apache.org/dyn/closer.cgi?path=/kafka/0.11.0.0/kafka_2.11-0.11.0.0.tgz

解压:

tar -zxvf kafka_2.11-0.11.0.0.tgz

img

进入kafka/config目录下:

img

以上文件是需要修改的文件,下面一个个修改配置:

配置server.properties:

以下为修改的,其他为默认即可:

#broker.id需改成正整数,单机为1就好
broker.id=1
#指定端口号
port=9092
#localhost这一项还有其他要修改,详细见下面说明
host.name=localhost
#指定kafka的日志目录
log.dirs=/usr/local/kafka_2.11-0.11.0.0/kafka-logs
#连接zookeeper配置项,这里指定的是单机,所以只需要配置localhost,若是实际生产环境,需要在这里添加其他ip地址和端口号
zookeeper.connect=localhost:2181

img

配置zookeeper.properties:

#数据目录
dataDir=/usr/local/kafka_2.11-0.11.0.0/zookeeper/data
#客户端端口
clientPort=2181
host.name=localhost

img

配置producer.properties:

zookeeper.connect=localhost:2181

img

配置consumer.properties:

zookeeper.connect=localhost:2181

img

最后还需要拷贝几个jar文件到kafka的libs目录,分别是zookeeper-xxxx.jar、log4j-xxxx.jar、slf4j-simple-xxxx.jar,最后如下:

img

四、kafka的使用

启动zookeeper服务:

bin/zookeeper-server-start.sh config/zookeeper.properties

img

img

新开一个窗口启动kafka服务:

bin/kafka-server-start.sh config/server.properties

img

img

至此单机服务搭建已经全部完成

单机多节点

对于单机单节点只需要使用一个配置文件来启动即可,那么对于单机多节点,只需要建立多个配置文件,并且启动即可。比如我们需要有三个节点。

在这里插入图片描述

然后我们的每个server properies里面的端口以及ID要不一致

server-1.properties

在这里插入图片描述

server-2.properties

在这里插入图片描述

server-3.properties

在这里插入图片描述

当然其对应的log对应目录也要修改,这个就不多说了

然后在控制台启动

> bin/kafka-server-start.sh config/server-1.properties &
> bin/kafka-server-start.sh config/server-2.properties &
> bin/kafka-server-start.sh config/server-3.properties &

通过jps -m 能看到三个kafka即可(可能以普通用户看不到相应的进程,只是因为没给到权限,可以给权限或者直接sudo su切换到超级用户)

Kafka控制台的一些命令操作

控制台中我们可以通过命令建立topic,并且开启一个消费者一个生产者来模拟通信,这些在官网的quickstart中都有详尽的描述

[外链图片转存失败(img-cCfCODtn-1569486879029)(../%E5%A4%A7%E6%95%B0%E6%8D%AE%E6%9C%80%E7%BB%88%E7%89%88%E6%96%87%E6%A1%A3/kafka%E5%AD%A6%E4%B9%A0/producer.png)]

在这里插入图片描述

通过我们的一个叫topic的标签,我们建立了一个生产者和一个消费者,可以明显看到消费者接收到了生产者的消息。其他比较常用的命令,比如describe等可以自行探索。

Java API控制Kafka

接下来会说一个简单的在Java中使用Kafka小例子

这里都是基于2.11_0.11.0.0.0版本以及之后的编程来说明,更低版本相应的API有些许变化,低版本中很多函数已经被替代和废除。

基本配置

  • 首先在Idea中建立一个新的Maven项目,这里我们选择一个achetype:scala-archetype-simple

在这里插入图片描述

  • 接下来我们把Maven文件配置好,并且auto import dependencies,这里如果没有选择auto import,我们可以在Pom.xml右键找到maven选项里面有一个reload

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
      <modelVersion>4.0.0</modelVersion>
      <groupId>com.test.spark</groupId>
      <artifactId>spark streaming</artifactId>
      <version>1.0</version>
      <inceptionYear>2008</inceptionYear>
      <properties>
        <scala.version>2.7.0</scala.version>
        <kafka.version>0.11.0.0</kafka.version>
      </properties>
    
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值