大数据开发文档
文章目录
本文档主要讲述了flume+kafka+spark的单机分布式搭建,由浅入深,介绍了常见大数据流处理流程
单机版环境搭建及相关DEMO
Flume
Flume基本介绍与架构
Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。
Flume出生日记
有很多的服务和系统
- network devices
- operating system
- web servers
- Applications
这些系统都会产生很多的日志,那么把这些日志拿出来,用来分析时非常有用的。
如何解决数据从其他的server上移动到Hadoop上?
shell cp hadoop集群上的机器上, hadoop fs -put …/ 直接拷贝日志,但是没办法监控,而cp的时效性也不好,容错负载均衡也没办法做
======>
Flume诞生了
Flume架构
Flume组成架构如图1-1,所示:
图1-1 Flume组成架构
Agent
Agent是一个JVM进程,它以事件的形式将数据从源头送至目的,是Flume数据传输的基本单元。
Agent主要有3个部分组成,Source、Channel、Sink。
Source
Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。
Channel
Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。
Flume自带两种Channel:Memory Channel
和File Channel
Memory Channel
是内存中的队列。Memory Channel
在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel
就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。
File Channel
将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。
Sink
Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。
Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。
Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。
Event
传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。
Flume拓扑结构
Flume的拓扑结构如图1-3、1-4、1-5和1-6所示:
图1-3 Flume Agent连接
图1-4 单source,多channel、sink
图1-5 Flume负载均衡
图1-6 Flume Agent聚合
Flume安装部署
Flume的安装相对简单,但是前提是要先下好Java环境JDK,1.8以上即可,JDK安装可以查看Kafka安装流程,这里以Linux下的安装为例
Flume安装地址
安装部署
- 解压apache-flume-1.7.0-bin.tar.gz到/usr/local/目录下(安装包详见安装包文件夹flume文件夹下的tar.gz压缩包)
#把下载的包移动到目录
$ sudo mv apache-flume-1.7.0-bin.tar.gz /usr/local
#解压
$ sudo tar -zxvf apache-flume-1.7.0-bin.tar.gz /usr/local/
- 修改apache-flume-1.7.0-bin的名称为flume
$ sudo mv apache-flume-1.7.0-bin flume
- 将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件
$ mv flume-env.sh.template flume-env.sh
$ vi flume-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144(这里路径替换为本机JDK安装目录)
案例实操
-
监控端口数据
-
案例需求
:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。 -
需求分析
:
-
-
实现步骤:
-
安装telnet工具
在/usr/local目录下创建flume-telnet文件夹。
$ mkdir flume-telnet
再将rpm软件包(xinetd-2.3.14-40.el6.x86_64.rpm、telnet-0.17-48.el6.x86_64.rpm和telnet-server-0.17-48.el6.x86_64.rpm)拷入/usr/local/flume-telnet文件夹下面。执行RPM软件包安装命令:
$ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm $ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm $ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm
-
-
判断44444端口是否被占用
判断44444端口是否占用,如果被占用则kill掉或者更换端口
$ sudo netstat -tunlp | grep 44444 功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。 基本语法:netstat [选项] 选项参数: -t或--tcp:显示TCP传输协议的连线状况; -u或--udp:显示UDP传输协议的连线状况; -n或--numeric:直接使用ip地址,而不通过域名服务器; -l或--listening:显示监控中的服务器的Socket; -p或--programs:显示正在使用Socket的程序识别码和程序名称;
-
创建Flume Agent配置文件
flume-telnet-logger.conf
在flume目录下创建job文件夹并进入job文件夹
$ mkdir job $ cd job/
-
在job文件夹下创建Flume Agent配置文件
flume-telnet-logger.conf
$ touch flume-telnet-logger.conf # 如果觉得vim上手难度太大,可以使用gedit来进行编辑 $ vim flume-telnet-logger.conf # 在conf文件中加入以下内容 # Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
注:配置文件来源于官方手册
-
先开启flume监听端口
$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console 参数说明: --conf conf/ :表示配置文件存储在conf/目录 --name a1 :表示给agent起名为a1 --conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。 -Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。
-
使用telnet工具向本机的44444端口发送内容
$ telnet localhost 44444
-
将A服务器上的日志实时采集到B服务器
一般跨节点都是使用
avro sink
技术选型有两种方案:
-
exec source + memory channel + avro sink
// Flume的关键就是写配置文件,仍然是在conf文件夹下创建配置文件 // avro-memory-sink.conf # Name the components on this agent exec-memory-avro.sources = exec-source exec-memory-avro.sinks = arvo-sink exec-memory-avro.channels = memory-channel # Describe/configure the source exec-memory-avro.sources.exec-source.type = exec exec-memory-avro.sources.exec-source.command = tail -F $FLUME_HOME/logs/flume.log exec-memory-avro.sources.exec-source.shell = /bin/sh -c # Describe the sink exec-memory-avro.sinks.arvo-sink.type = avro exec-memory-avro.sinks.arvo-sink.hostname = localhost exec-memory-avro.sinks.arvo-sink.port = 44444 # Use a channel which buffers events in memory exec-memory-avro.channels.memory-channel.type = memory exec-memory-avro.channels.memory-channel.capacity = 1000 exec-memory-avro.channels.memory-channel.transactionCapacity = 100 # Bind the source and sink to the channel exec-memory-avro.sources.exec-source.channels = memory-channel exec-memory-avro.sinks.arvo-sink.channel = memory-channel
-
avro source + memory channel + logger sink
// avro-logger-sink.conf # Name the components on this agent avro-memory-logger.sources = avro-source avro-memory-logger.sinks = logger-sink avro-memory-logger.channels = memory-channel # Describe/configure the source avro-memory-logger.sources.avro-source.type = avro avro-memory-logger.sources.avro-source.bind = localhost avro-memory-logger.sources.avro-source.port = 44444 # Describe the sink avro-memory-logger.sinks.logger-sink.type = logger # Use a channel which buffers events in memory avro-memory-logger.channels.memory-channel.type = memory avro-memory-logger.channels.memory-channel.capacity = 1000 avro-memory-logger.channels.memory-channel.transactionCapacity = 100 # Bind the source and sink to the channel avro-memory-logger.sources.avro-source.channels = memory-channel avro-memory-logger.sinks.logger-sink.channel = memory-channel
接下来启动两个配置
先启动avro-memory-logger flume-ng agent \ --name avro-memory-logger \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/avro-memory-logger.conf \ -Dflume.root.logger=INFO,console 再启动另外一个 flume-ng agent --name exec-memory-avro --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/exec-memory-avro.conf \ -Dflume.root.logger=INFO,console
-
一个可能因为手误出现的bug
log4j:WARN No appenders could be found for logger (org.apache.flume.lifecycle.LifecycleSupervisor).
log4j:WARN Please initialize the log4j system properly.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
出现这个错误是因为路径没有写对
往监听的日志中输入一段字符串,可以看到我们的logger sink 已经成功接收到信息
上面Flume的基本流程图如下
Kafka
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,[3]这使它作为企业级基础设施来处理流式数据非常有价值。此外,Kafka可以通过Kafka Connect连接到外部系统(用于数据输入/输出),并提供了Kafka Streams——一个Java流式处理库。
具体的架构可以查看官网的intro部分。
因为在实际编程中使用kafka_2.11-0.11.00以上版本和使用以下版本的Java API 不一致,所以推荐直接参照官网的文档进行编程。
环境搭建
单机单节点
搭建说明
需要有一定的Linux操作经验,对于没有权限之类的问题要懂得通过命令解决
Kafka的安装相比Flume来说更加复杂,因为Kafka依赖于Zookeeper
环境说明:
- os:Ubuntu 18.04
- zookeeper:zookeeper 3.4.9
- kafka:kafka_2.11-0.11.0.0
- jdk:jdk 8(kafka启动需要使用到jdk)
详细说明:
一、jdk安装
jdk分为以下几种:jre、openjdk、 oracle jdk,这里我们要安装的是oracle jdk(推荐安装)
add-apt-repository ppa:webupd8team/java
apt-get update
apt-get install oracle-java8-installer
apt-get install oracle-java8-set-default
测试安装版本:
二、安装配置zookeeper单机模式
下载zookeeper 3.4.5,开始安装(软件包详见软件包下的kafka中的压缩包):
cd /usr/local
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz
等待安装成功:
解压:
tar -zxvf zookeeper-3.4.5.tar.gz
解压后同目录下便存在相同文件夹:
切换到conf目录下:
cd zookeeper-3.4.5/conf/
复制zoo_sample.cfg到zoo.cfg:
cp zoo_sample.cfg zoo.cfg
然后编辑zoo.cfg如下(其它不用管,默认即可):
initLimit=10
syncLimit=5
dataDir=/home/young/zookeeper/data
clientPort=2181
别忘了新建dataDir目录:
mkdir /home/young/zookeeper/data
为zookeeper创建环境变量,打开/etc/profile文件,并在最末尾添加如下内容:
vi /etc/profile
添加内容如下:
export ZOOKEEPER_HOME=/home/young/zookeeper
export PATH=.:$ZOOKEEPER_HOME/bin:$JAVA_HOME/bin:$PATH
配置完成之后,切换到zookeeper/bin目录下,启动服务:
关闭服务:
这里暂时先关闭zookeeper服务,防止下面使用kafka启动时报端口占用错误。
三、安装配置kafka单机模式
下载kafka(安装包详见软件包kafka下的压缩包):
cd /usr/local
wget https://www.apache.org/dyn/closer.cgi?path=/kafka/0.11.0.0/kafka_2.11-0.11.0.0.tgz
解压:
tar -zxvf kafka_2.11-0.11.0.0.tgz
进入kafka/config目录下:
以上文件是需要修改的文件,下面一个个修改配置:
配置server.properties:
以下为修改的,其他为默认即可:
#broker.id需改成正整数,单机为1就好
broker.id=1
#指定端口号
port=9092
#localhost这一项还有其他要修改,详细见下面说明
host.name=localhost
#指定kafka的日志目录
log.dirs=/usr/local/kafka_2.11-0.11.0.0/kafka-logs
#连接zookeeper配置项,这里指定的是单机,所以只需要配置localhost,若是实际生产环境,需要在这里添加其他ip地址和端口号
zookeeper.connect=localhost:2181
配置zookeeper.properties:
#数据目录
dataDir=/usr/local/kafka_2.11-0.11.0.0/zookeeper/data
#客户端端口
clientPort=2181
host.name=localhost
配置producer.properties:
zookeeper.connect=localhost:2181
配置consumer.properties:
zookeeper.connect=localhost:2181
最后还需要拷贝几个jar文件到kafka的libs目录,分别是zookeeper-xxxx.jar、log4j-xxxx.jar、slf4j-simple-xxxx.jar,最后如下:
四、kafka的使用
启动zookeeper服务:
bin/zookeeper-server-start.sh config/zookeeper.properties
新开一个窗口启动kafka服务:
bin/kafka-server-start.sh config/server.properties
至此单机服务搭建已经全部完成
单机多节点
对于单机单节点只需要使用一个配置文件来启动即可,那么对于单机多节点,只需要建立多个配置文件,并且启动即可。比如我们需要有三个节点。
然后我们的每个server properies
里面的端口以及ID要不一致
server-1.properties
server-2.properties
server-3.properties
当然其对应的log对应目录也要修改,这个就不多说了
然后在控制台启动
> bin/kafka-server-start.sh config/server-1.properties &
> bin/kafka-server-start.sh config/server-2.properties &
> bin/kafka-server-start.sh config/server-3.properties &
通过jps -m 能看到三个kafka即可(可能以普通用户看不到相应的进程,只是因为没给到权限,可以给权限或者直接sudo su切换到超级用户)
Kafka控制台的一些命令操作
控制台中我们可以通过命令建立topic,并且开启一个消费者一个生产者来模拟通信,这些在官网的quickstart中都有详尽的描述
通过我们的一个叫topic的标签,我们建立了一个生产者和一个消费者,可以明显看到消费者接收到了生产者的消息。其他比较常用的命令,比如describe
等可以自行探索。
Java API控制Kafka
接下来会说一个简单的在Java中使用Kafka小例子
这里都是基于2.11_0.11.0.0.0
版本以及之后的编程来说明,更低版本相应的API有些许变化,低版本中很多函数已经被替代和废除。
基本配置
- 首先在Idea中建立一个新的Maven项目,这里我们选择一个achetype:scala-archetype-simple
-
接下来我们把Maven文件配置好,并且auto import dependencies,这里如果没有选择auto import,我们可以在Pom.xml右键找到maven选项里面有一个reload
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.test.spark</groupId> <artifactId>spark streaming</artifactId> <version>1.0</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.7.0</scala.version> <kafka.version>0.11.0.0</kafka.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala