256创作纪念日

本文分享了一个准大三软件工程学生的编程成长经历,专注于C++学习,强调通过写作、刷题和扎实基础知识来提升技术能力,同时反思了自身的不足,承诺要在实习和求职前改正错误,提升自律性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知不觉已经是写博客的第256天了,从一个躺平的人变成一个为一件事能坚持并不断去做是真的很爽,回过头看看自己,写了好多东西,也慢慢在成长,不再是以前那个只会玩的小孩了。

1、自我介绍

我是来自西安的一名准大三学生(学校就不说了,大家懂),二十岁,软件工程专业,我在C站上的名字叫做“小白在努力jy”,这个名字大家一看就知道什么意思了,但是jy大家可能会更感兴趣吧,不是“加油”,也不是因为同名问题,是女朋友的名字,嘻嘻嘻。很感谢女朋友,对于我们做技术的人来说,对技术是比较痴的,因此有时候会冷落另一半,但是她很好,很支持我,虽然我们也会有不愉快的时候,她依旧支持我,希望在512,1024纪念日的时候依旧是jy。

2、编程目标

1、我选的是C++方向,C++精通很难,不妨说想要精通一门语言都是很难的,所以,我想不断让自己的技术往上提(没有上限,就去尽自己最大能力去学),不只是去学,而是变得感兴趣,要不这是一件很痛苦的事。

2、C++是与底层接触的,因此我们需要对底层一些东西很了解,打好自己的基础,对自己学过的知识要学的扎实。

3、见多了大牛就知道自己还很弱,希望可以找一个中等的实习,薪资看自己的水平,谁都希望越多越好,能力要能匹配得上薪资。

3、怎么去学

通过这么长时间的学习,我发现,好记性真的不如烂笔头,我对一个知识点理解记忆过好多次,还是会忘,但是写博客真的让我在复习的时候很爽,里面有我自己写的思路,一下就能想的起来是怎么理解的,因此博客是真的很重要,要持续去写,虽然很费时间,但是对复习会起很大作用。

对于代码,不仅是自己写出来就可以,会有好多优质的解法,我们可以不断去优化自己的代码,这真的是对自己的锻炼,不仅仅是写出来,在写出来的前提下要去探索优化的方法。

每天去练,力扣确实难,但是对自己的能力提升作用很大,我还记得第一次写力扣的题,我是XX吗?简单题都不会,哈哈哈,幸好坚持下来了,试试一百道题后,一定锻炼出自己的,这方面还是要坚持。最近我发现自己对刷题不那么认真了,得认真对待了,希望512的时候再回头看能力提升一大截。

4、评价一下自己

很菜很垃圾,是在坚持,但是不能为了刷题去刷题,要改正,多复习,写过的题再写还是会卡壳,迁移能力好弱,就快要找实习了,再这么下去工作都难找,好好学习,好好复习,改掉自己的一些臭毛病,别忘了当初的难,希望512的时候回头看是一个成熟的自律的成年人。

最后送自己一段话:“年轻时捡了一把枪,因为好玩开了一枪,也没什么人受伤,多年后的自己正在走路,听到风声回头,子弹正中眉心”。

不要开这一枪,真的会害死自己的。已经失败过了,别再输了,最后的机会了。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白在努力jy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值