HDU - 1878 欧拉回路

欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15862    Accepted Submission(s): 6072


Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 

Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 

Sample Input
  
  
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
 

Sample Output
  
  
1 0


思路:想了半天才想起来欧拉回路的判断条件,-_-大一的离散白学了。

若一个图上每个顶点的度均为偶数,则为欧拉回路,所以输入边的时候统计一下每个顶点的度数。

坑点:只有一个顶点的时候一定是欧拉回路,存在孤立点(没有从这个点出发的边)一定不是欧拉回路。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

int n,m;
int cnt[1010];
int mp[1010][1010];
int main()
{
	while(cin>>n)
	{
		if(n==0)
		break;
		cin>>m;
		memset(cnt,0,sizeof(cnt));
		while(m--)
		{
			int x,y;
			cin>>x>>y;
			if(x!=y)
			{
				cnt[x]++;
				cnt[y]++;
			}
		}
		if(n==1)
		{
			printf("1\n");
			continue;
		}
		int i;
		for(i=1;i<=n;i++)
		{
			if(cnt[i]&1||cnt[i]==0)
			{
				printf("0\n");
				break;
			}
		}
		if(i==n+1)
		{
			printf("1\n");
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值