欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 15862 Accepted Submission(s): 6072
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0
思路:想了半天才想起来欧拉回路的判断条件,-_-大一的离散白学了。
若一个图上每个顶点的度均为偶数,则为欧拉回路,所以输入边的时候统计一下每个顶点的度数。
坑点:只有一个顶点的时候一定是欧拉回路,存在孤立点(没有从这个点出发的边)一定不是欧拉回路。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
int cnt[1010];
int mp[1010][1010];
int main()
{
while(cin>>n)
{
if(n==0)
break;
cin>>m;
memset(cnt,0,sizeof(cnt));
while(m--)
{
int x,y;
cin>>x>>y;
if(x!=y)
{
cnt[x]++;
cnt[y]++;
}
}
if(n==1)
{
printf("1\n");
continue;
}
int i;
for(i=1;i<=n;i++)
{
if(cnt[i]&1||cnt[i]==0)
{
printf("0\n");
break;
}
}
if(i==n+1)
{
printf("1\n");
}
}
}