人工智能专业深度学习课复习笔记

以下复习内容来自深度学习原理与TensorFlow实践 ·黄理灿 编著
以及专业学习通学习内容代码
在这里插入图片描述
一. 机器学习相关的相关知识
(1) 微积分(导数部分)
导数公式:
在这里插入图片描述
例题1由y=x2+2x+2
得y’=2x+1
其中x2 因为公式y=xu y’=uxu-1得2x
2x 因为公式y=x y’=1 得1
2因为公式y=c y’=0 得0
例题2f(x)=2x2+4x+1 g(x)=2x+1求
(1) f(g(x))’
f(g(x))’先算f(g(x))得2(2x+1)(2x+1)+4·
(2x+1)+1
得(16x2+16x)’
结果为(16x+16)

(2)线性代数(矩阵)
线性代数矩阵公式

(3)概率论
概率:样本空间S具有有限个基本事件,并且这些基本事件可能发生的情况下,事件A在本事件数占S中的所有基本时间的比例。:
P(A)=A包含基本事件数/S所有基本事件数
条件概率:在某一事件已发生的情况下,另一事件发生的概率。例如A已发生的条件下,B发生的概率:
P(B|A)=P(AB)/P(A)
全概率公式: 在这里插入图片描述

贝叶斯公式:在这里插入图片描述

例题:找次品问题:A, B,C 产品占比分布为 1/2, 1/6, 1/3; A, B,C的次品率分布为 0.2, 0.1, 0.3; 求出现次品是A做出来的概率;
P(A)=1/2 , P(B)=1/6 , P©=1/3
P(z)表示损坏设备概率
则P(Z|A)=0.2=1/5 P(Z|B)=0.1=1/10 P(Z|C)=0.3=3/10
P(A|Z)=P(A))P(Z|A)/P(A)P(Z|A)+P(B)·P(Z|B)+P©·P(Z|C)
=1/2 x 1/5 / 1/2 x 1/5 + 1/6 x 1/10 + 1/3 x 3/10
=1/10 / 13/60 = 6/13 ≈ 0.4615

题目引用自: https://blog.csdn.net/qq_36533552/article/details/109542337

二.机器学习方法
1.监督学习的原理:
监督学习假定训练数据和真实预测数据属于同一概率分布并且相互独立。监督学习通过训练学习到数据的概率分布,并应用到真实的预测上。
(1)输入空间,特征空间和输出空间
输入空间与输出空间可以相同,也可以不同,通常输出空间要远小于输入空间。每个具体的输入称为一个实例(Instance),由特征向量(Feature Vector)表示。所有特征向量形成特征空间(Feature Space)。特征空间的每一个维对应一个特征。
输入变量与输出变量均为连续变量的预测问题成为回归问题,输出变量为有限个离散变量的预测问题成为分类问题,输入变量与输出变量均为变量序列的预测问题成为标注问题。
2.KNN算法
欧几里德距离(Euclidean Distance):欧氏距离

###python 实现欧式距离公式 
from numpy import *
vector1 = np.mat([1,2,3]) ###np.mat将python的列表转换成Numpy的矩阵
vector2 = np.mat([4,5,6])
vector3 = np.mat([8,9,10])
print("向量1到向量3的欧式距离:\n",sqrt((vector1-vector3)*((vector1-vector3).T)))
print("向量1到向量2+向量2到向量3的欧式距离:\n",sqrt((vector1-vector2)*((vector1-vector2).T))+sqrt((vector2-vector3)*((vector2-vector3).T))) 
result:向量1到向量3的欧式距离:
 [[12.12435565]]
向量1到向量2+向量2到向量3的欧式距离:
 [[12.12435565]] 

曼哈顿距离(Manhattan Distance):来源于城市区块距离,是多个维度上的距离进行求和结果

#python实现曼哈顿距离:
from numpy import *
vector1 = mat(([1,2,3]))
vector2 = mat([4,5,6])
vector3 = mat([8,9,10])
print("向量1到向量3的曼哈顿:\n",sum(abs(vector1-vector3)))
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值