miniconda+VSCode深度学习环境配置(小白教程二)

miniconda+VSCode深度学习环境配置(小白教程二)

1.VSCode选择虚拟环境

新建一个名为test文件夹,点击VSCode右上角的文件–>打开文件夹,选中刚刚创建的test文件夹

在这里插入图片描述

一定要点我信任作者,不然后面可能会报错。

在这里插入图片描述

点击新建文件或者在下方右键选择新建文件,命名为test.py

在这里插入图片描述

双击打开test.py文件,右下角会显示当前环境名称。

在这里插入图片描述

单击右下角环境名,出现选择解释器,选中刚刚创建的test虚拟环境,成功以后右下角环境名换变为选择的虚拟环境名。

在这里插入图片描述

  点击终端中的新建终端,终端窗口中的环境名会自动激活为test。

在这里插入图片描述

2.pytorch配置

  pytorch 就是 Python 的 torch 包,是深度学习和机器学习中的一个非常强大的工具,一般安装torch的版本根据复现的项目要求。可以在https://pytorch.org/get-started/previous-versions/.中查询torch依赖包的对应关系。
  在这里仅仅为了测试,教大家如何安装torch,后面的url一般是官方源,国内访问速度较慢。
在这里插入图片描述
  使用国内镜像源配置的有cpu版本和gpu版本,一般用gpu处理速度较快,清华源和中国科大源默认安装的是cpu版本的torch。
  使用镜像源安装GPU版的torch命令如下,其中==-f https://mirrors.aliyun.com/pytorch-wheels/cu121/==指定镜像源为阿里镜像源

pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 -f https://mirrors.aliyun.com/pytorch-wheels/cu121/

在这里插入图片描述
  测试GPU版的torch是否可用,在终端中输入逐句以下命令回车

python
import torch
torch.cuda.is_available()

  在这里我遇到了一个错误 numpy版本过高,
  没有错误的可以自动跳过-------------------------------------------------------------------------------------------
在这里插入图片描述
在终端中输入以下命令指定镜像源回车安装低版本的numpy

pip install numpy<2 -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述-------------------------------------------------------------------------------------------------------------------------------------

输出为True 证明torch已经配置成功了

在这里插入图片描述

3.CodeGeeX

介绍一个对小白友好的插件,在VSCode的扩展商店中搜索codegeex并安装,需要跳转到网站登陆才能正常使用。

在这里插入图片描述
测试代码

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

# 1. 随机生成数据
# 生成100个样本,每个样本有10个特征
X = torch.randn(100, 10)
# 生成对应的标签,这里假设是线性关系:Y = 2X1 + 3X2 - X3 + noise
Y = 2 * X[:, 0] + 3 * X[:, 1] - X[:, 2] + torch.randn(100) * 0.1  # 加上一些噪声

# 2. 定义简单的MLP模型
class SimpleMLP(nn.Module):
    def __init__(self):
        super(SimpleMLP, self).__init__()
        self.fc1 = nn.Linear(10, 64)  # 输入10个特征,输出64个节点
        self.fc2 = nn.Linear(64, 1)   # 输出1个预测值

    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活
        x = self.fc2(x)
        return x

# 3. 初始化模型、损失函数和优化器
model = SimpleMLP()
criterion = nn.MSELoss()  # 均方误差损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 4. 训练模型
num_epochs = 100
losses = []

for epoch in range(num_epochs):
    model.train()
    
    # 前向传播
    predictions = model(X)
    
    # 计算损失
    loss = criterion(predictions.squeeze(), Y)  # Y是1维向量,所以需要squeeze
    losses.append(loss.item())
    
    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# 5. 可视化损失
plt.plot(range(num_epochs), losses, label='Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training Loss vs Epochs')
plt.legend()
plt.show()

出现波浪线的依赖包一般是未安装或者安装版本不匹配导致,点击右边的CodeGeeX,询问安装xxx的pip镜像源命令,在终端中输入安装命令即可。
在这里插入图片描述
新建一个终端 或者在刚刚的终端中输入exit() 退出,输入

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
安装完成后波浪线会自动消失。
在这里插入图片描述
点击运行 调试当前的python文件,出现以下界面证明你的第一个深度学习环境已经搭建成功了。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值