【python】搭配Miniconda使用VSCode

本文指导读者如何在VSCode中配置Miniconda环境并管理Python解释器,以便在VSCode中运行包含matplotlib的Python代码,同时讨论了在JupyterNotebook和普通Python脚本中图形输出的问题和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在的spyder总是运行出错,启动不了,尝试使用VSCode。

一、在VSCode中使用Miniconda管理的Python环境,可以按照以下步骤进行:

a. 确保Miniconda环境已经安装并且正确配置。

b. 打开VSCode,安装Python扩展。

打开VSCode,进入扩展市场(Extensions)(视觉上通常用四个平行的正方形表示),搜索“Python”,然后选择由Microsoft发布的那个扩展。点击安装。

c. 创建或激活一个Conda环境

d. 在VSCode中设置Python解释器,按`Ctrl+Shift+P`打开命令面板,然后输入`Python: Select Interpreter`,选择Conda环境。也可能会看到在VSCode左下角可以选择和激活不同的Python解释器。

VSCode将会使用在第3步中选择的Miniconda环境下的Python解释器。

二、运行

### 在 Ubuntu 系统上安装和配置 VSCode #### 1. 安装 VSCode 可以通过多种方式在 Ubuntu 上安装 Visual Studio Code (VSCode),以下是推荐的方法之一: 通过官方提供的 `.deb` 文件进行安装: - 首先访问官网的历史版本页面,下载适用于 Linux 的 `.deb` 文件[^2]。 - 使用以下命令完成安装: ```bash sudo dpkg -i <path_to_downloaded_file>/code_*.deb ``` 如果遇到依赖项缺失的情况,可以运行以下命令解决: ```bash sudo apt --fix-broken install ``` 另一种方法是通过 Microsoft 提供的 APT 存储库来安装最新版 VSCode: - 添加 GPG 密钥并注册存储库: ```bash wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > packages.microsoft.gpg sudo install -o root -g root -m 644 packages.microsoft.gpg /etc/apt/trusted.gpg.d/ sudo sh -c 'echo "deb [arch=amd64,arm64,armhf signed-by=/etc/apt/trusted.gpg.d/packages.microsoft.gpg] https://packages.microsoft.com/repos/code stable main" > /etc/apt/sources.list.d/vscode.list' rm -f packages.microsoft.gpg ``` - 更新软件包列表并安装 VSCode: ```bash sudo apt update && sudo apt install code ``` 启动 VSCode 可以通过桌面菜单或者终端输入 `code` 命令实现[^3]。 --- #### 2. 配置 Python 开发环境 为了支持 Python 开发,在 VSCode 中需要额外安装扩展以及设置开发所需的工具链。 ##### a. 创建 Miniconda 虚拟环境 Miniconda 是一种轻量级的 Conda 发行版,适合快速搭建 Python 环境。执行如下操作: - 下载 Miniconda 安装脚本: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh ``` - 执行安装脚本: ```bash bash Miniconda3-latest-Linux-x86_64.sh ``` 按照提示完成安装后初始化 Conda 并关闭当前终端重新打开使其生效。 - 创建一个新的虚拟环境(假设目标 Python 版本为 3.8): ```bash conda create -n pytorch_env python=3.8 ``` 激活该环境: ```bash conda activate pytorch_env ``` ##### b. 安装 PyTorch 和 CUDA 支持 PyTorch 是一个流行的机器学习框架,通常搭配 NVIDIA 的 CUDA 技术加速计算性能。具体安装指令取决于硬件条件(是否有 GPU),可以从其官方网站获取适配的安装命令[^1]。例如对于 CPU-only 场景可尝试: ```bash pip install torch torchvision torchaudio ``` --- #### 3. 配置 ROS 插件(可选) 如果计划利用 VSCode 进行机器人操作系统(ROS)项目开发,则需进一步调整编辑器参数以便更好地兼容此类任务需求。 - 安装必要的 ROS 工具集插件; - 设置路径变量使得能够调用像 `catkin_make` 这样的核心构建函数。 --- #### 总结 上述流程涵盖了从基础到高级定制化选项的内容,旨在帮助开发者顺利部署基于 Ubuntu 的集成编程平台——Visual Studio Code,并针对特定领域如人工智能或自动化控制提供初步指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值