洛谷 P2424 约数和

本文介绍了洛谷P2424题目的解法,包括20分、60分及正解策略。20分做法是枚举约数判断,60分做法通过枚举倍数计算贡献。正解利用数论分块优化,通过求解相同⌊in⌋值的区间来减少时间复杂度,最终实现O(n)的时间复杂度解题。
摘要由CSDN通过智能技术生成

题目链接

思路 && 代码

数论分块

算是数论分块的模板题了吧

20分做法

纯暴力,直接枚举,然后每个数 O ( n ) O(\sqrt{n}) O(n ) 判断,时间复杂度 O ( n n ) O(n \sqrt{n}) O(nn )

需要注意不要闷着头一直枚举到 n \sqrt{n} n ,如果 n n n的约数 i i i的平方恰好等于 n n n,只加一个就足够了

int x, y, ans;

signed main() {
   
	x = read(), y = read();
	for (int i = x; i <= y; i++) {
   
		for (int j = 1; j <= sqrt(i); j++) {
   
			if (!(i % j)) {
   
				if (j * j == i) ans += j;
				else ans += j + (i / j);
			}
		}
	}
	cout << ans << '\n';
	return 0;
}

60分做法

也是一种暴力 思路是转枚举约数为枚举倍数

容易得出一个数 i i i n n n中一共有 ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in i i i的倍数,那么 i i i n n n中的贡献为 ⌊ n i ⌋ ∗ i \lfloor\frac{n}{i}\rfloor * i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值